### 27<sup>th</sup> Hellenic Thoracic Society

## **ADMISSION PREVENTION IN COPD**

Using Translational Physiological Science to Design Future Clinical Trials

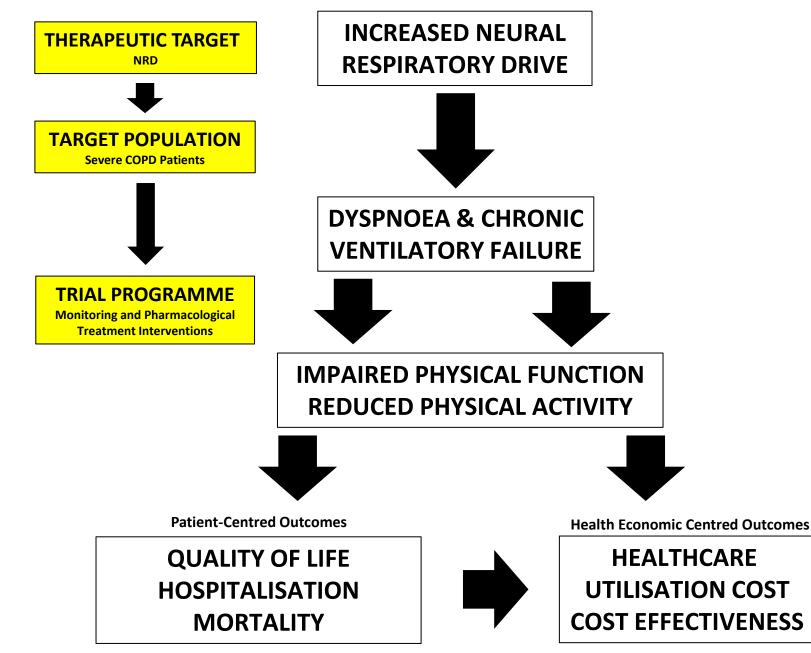


Nicholas Hart Professor of Respiratory & Critical Care Medicine Clinical Director of Lane Fox Respiratory Service St Thomas' Hospital Director of Research Delivery Guys & St Thomas' NHS Foundation Trust London UK

Joint Editor-in-Chief THORAX

nicholas.hart@gstt.nhs.uk @NickHartThorax

#### Lane Fox Respiratory Service


Specialists in Complex Home Ventilation, Weaning & Rehabilitation

### **Conflict of Interest Disclosure**

# Real or perceived direct or indirect conflicts of interest that relate to this presentation:

| Affiliation                                                                   | Nature of conflict                                                              |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Tobacco-industry and tobacco corporate affiliate related conflict of interest | Not applicable                                                                  |
| Grants/Research Support (to my institution)                                   | Philips<br>Resmed<br>Fisher-Paykel<br>B&D Electromedical                        |
| Honoraria or consultation fees                                                | Astra Zeneca<br>GSK<br>Philips<br>Resmed<br>Fisher-Paykel<br>B&D Electromedical |
| Participation in a company sponsored bureau                                   | Philips<br>Resmed                                                               |
| Stock shareholder                                                             | Not applicable                                                                  |
| Spouse/partner                                                                | Not applicable                                                                  |
| Other support or other potential conflict of interest                         | Nil                                                                             |

### LANE FOX CLINICAL RESPIRATORY PHYSIOLOGY CENTRE



DUTCOME

**LION** 

FUN

MUSCL & MUSC

NOL

UR

### LANE FOX CLINICAL RESPIRATORY PHYSIOLOGY RESEARCH CENTRE

#### LANE FOX CLINICAL RESPIRATORY PHYSIOLOGY GROUP

- Prof Joerg Steier
- Dr Bronwen Connolly
- Dr Patrick Murphy\*\*\*
- Dr Phil Marino
- Dr Eui-Sik Suh\*
- Dr Swapna Mandal
- Dr Michelle Ramsay\*\*
- Dr Maxine Patout
- Miss Gill Arbane

#### **KINGS COLLEGE LONDON**

- Prof John Moxham
- Dr Gerrard Rafferty
- Dr Caroline Jolley
- Dr Abdel Douri

#### **ROYAL BROMPTON HOSPITAL**

- Prof Michael Polkey
- Dr Nicholas Hopkinson
- Dr William Man

#### PEER-REVIEWED AWARDS

European Respiratory Society GSK Award 2014\*; European Respiratory Society British Lung Foundation Award 2014\*\*; European Respiratory Society Intensive Care Assembly Non-Invasive Ventilation Group 2013\*\*, American Thoracic Society Critical Care Assembly 2011 \*\*\*, European Respiratory Society Intensive Care Assembly Non-Invasive Ventilation Group 2010\*\*\*

## **Biomarkers to Predict Outcome**

## NEJM 2012

'In recent decades, biomarkers have become essential in diagnosing disease and assessing response to therapy. The increasing quantitative rigor and efficiency of these tests have led to the possibility of 'personalized medicine'. Despite such progress, the way in which a physician uses biomarkers recapitulates an enduring practice of medicine: measure the patient, think about the result and make a decision'

Aaron S. Kesselheim, M.D., J.D., M.P.H., and Jason Karlawish, M.D.

# BIOMARKER

• Indicator of either

-a normal or pathogenic processes

-a response to therapeutic interventions

- Objectively measured and evaluated
- Generally a substance or molecule

National Institute of Health

#### <u>Sputum</u>

- Similar cellular composition to BAL
  - Presence of sputum eosinophilia predicts response to corticosteroids and a larger response to bronchodilators
- Inflammatory mediators
  - IL-8, IL-6 and TNF increased in severe COPD
  - Sputum IL-8 increases with decreasing FEV<sub>1</sub>

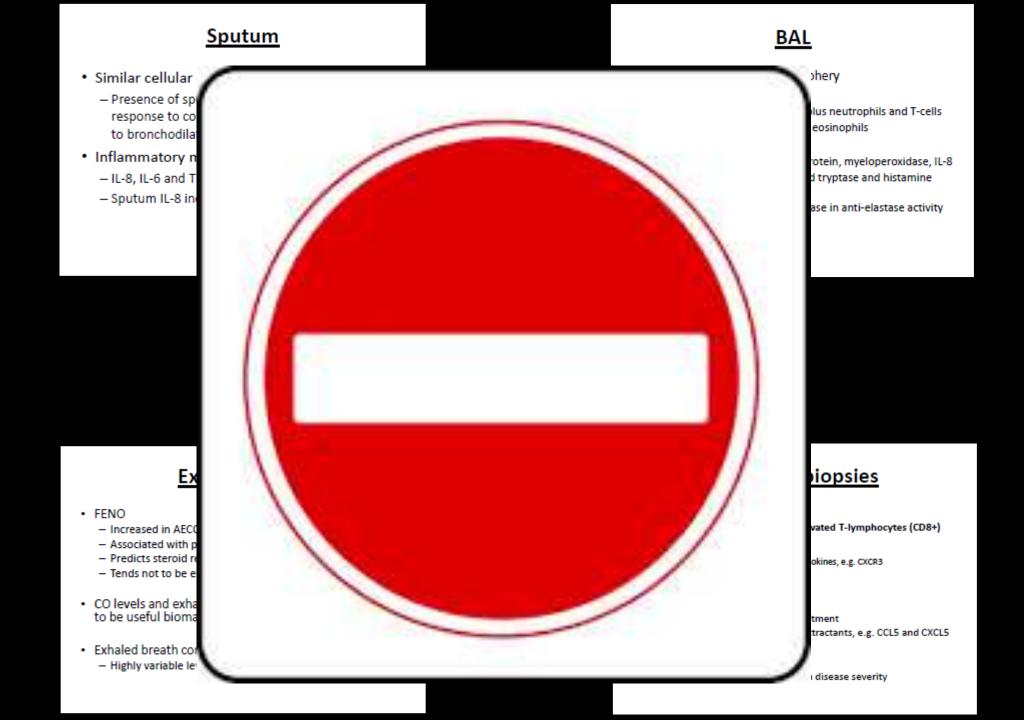
#### BAL

- Samples cells from lungs periphery
- Cellular composition
  - >80% alveolar macrophages, plus neutrophils and T-cells
  - Some patients have increased eosinophils
- Inflammatory mediators
  - Elevated eosinophil cationic protein, myeloperoxidase, IL-8
  - Mast cell activation with raised tryptase and histamine levels
  - Increase in elastase and decrease in anti-elastase activity in COPD

#### Serum biomarkers

- TNFα, IL-8, CRP, leptin, endothelin-1, fibrinogen, IL-6 and leukotriene E4 all increased in exacerbations of COPD compared to stable disease
- hsCRP most effective biomarker in distinguishing AECOPD from stable state, but magnitude of CRP does not reflect severity of exacerbation
- Procalcitonin levels not significantly increased in AECOPD due to bacterial infection, but PCT-guided treatment reduces antibiotic use
- High initial fibrinogen levels predict moderate-to-severe exacerbations

#### **Bronchial biopsies**


#### In stable COPD

- Increased macrophages and activated T-lymphocytes (CD8+) expressing
  - IFNY, CXCL10, IL-9
  - Type-1 response-associated chemokines, e.g. CXCR3
- Prominent neutrophilia
- During exacerbations
  - Eosinophil and neutrophil recruitment
  - Increased expression of chemoattractants, e.g. CCL5 and CXCL5
- Disease progression
  - Increased NF-κB expression with disease severity

#### Exhaled gases

#### FENO

- Increased in AECOPD
- Associated with presence of eosinophils
- Predicts steroid responsiveness
- Tends not to be elevated in the stable state
- CO levels and exhaled volatile hydrocarbons not found to be useful biomarkers
- Exhaled breath condensates
  - Highly variable levels of inflammatory mediators



### What is an Advanced Physiological Biomarker?

### **ADVANCED PHYSIOLOGICAL BIOMARKER**

- Indicator of either
  - -a normal or pathogenic processes
  - -a response to therapeutic interventions
- Objectively measured and evaluated
- Generally a substance or molecule

### National Institute of Health

### **ADVANCED PHYSIOLOGICAL BIOMARKER**

- Diagnostic marker
- Marker of disease severity
- Marker of disease progression
- Marker of treatment effect

### **ADVANCED PHYSIOLOGICAL BIOMARKER**

- Diagnostic marker
- Marker of disease severity
- Marker of disease progression
- Marker of treatment effect failure

**ACUTE MYOTRACE PROGRAMME:** Developing Advanced Respiratory Physiological Biomarkers to Risk Stratify AECOPD Patients to Enhance Safe Discharge and Prevent Admission

## **MYOTRACE PROGRAMME:** Advanced Respiratory Physiological Monitoring

- Breathlessness is a subjective condition reported by the patient (SYMPTOM)
- Dyspnoea is an objective condition reported by the clinician (SIGN)

## **MYOTRACE PROGRAMME:** Advanced Respiratory Physiological Monitoring

- Breathlessness is a subjective condition reported by the patient (SYMPTOM)
- Dyspnoea is an objective condition reported by the clinician (SIGN)

How do we integrate these subjective and objective measurements?

How do we translate these measurements into clinical practice?

## **Financial Cost of Acute Exacerbations of COPD**

- US data has shown that AECOPD account for
  - 1.5 million ED attendances
  - 726,000 hospitalisations
  - 119,000 deaths
- Direct costs have been estimated at \$29.5 billion with indirect costs of \$20.4 billion
- UK data has shown that AECOPD has 20% hospital readmission rate within 28 days and up to a third of patients readmitted within 3 months
- UK & US incentivised performance by the introduction of financial penalties for patients who are readmitted to acute hospitals within 28 days

Mannino DM et al: Chronic obstructive pulmonary disease surveillance--United States, 1971-2000. MMWR Surveill Summ 2002, 51(6):1-16

U.S. Department of Health and Human Services NIoH, National Heart Lung and Blood Institute.: Morbidity and Mortality: Chartbook on Cardiovascular, Lung and Blood Diseases. 2009

Chronic obstructive pulmonary disease. National clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax 2004, 59 Suppl 1:1-232

National COPD Resources and Outcomes Project (NCROP) <u>http://wwwbrit-</u> thoracicorguk/Portals/0/Clinical%20Information/COPD/NCROP/NCROPClinicalAuditpdf

Report of the 2003 National COPD Audit. The Royal College of Physicians and the British Thoracic Society 2004

Westert GP et al: An international study of hospital readmissions and related utilization in Europe and the USA. Health Policy 2002, 61(3):269-278

## Human Cost of Acute Exacerbations of COPD

- An acute exacerbation of COPD has detrimental effects on lung function, HRQL and exercise capacity
- Patients with >3 exacerbations per year have a 5-year survival rate of only 30%
- Exacerbation-free patients have a 5-year survival rate of 80%

Connors A et al. Am J Respir Crit Care Med 1996, 154:959-967 Seemungal TA et al. AJRCCM 1998, 157(5 Pt 1):1418-1422 Donaldson GC et al. Thorax 2002, 57(10):847-852 Almagro P et al. Chest 2002, 121(5):1441-1448 Groenewegen KH et al. Chest 2003, 124(2):459-467 Soler-Cataluna JJ et al. Thorax 2005, 60(11):925-931 Donaldson GC et al. Chest 2005, 128(4):1995-2004 Cote CG et al. Chest 2007, 131(3):696-704 Celli BR et al. AJRCCM 2008, 178(4):332-338 Esteban C et al. Resp Med 2009, 103(8):1201-1208 Vestbo J et al. NEJM 2011, 365(13):1184-1192 Halpin DM et al Int J Chron Obstruct Pulmon Dis 2012, 7:653-661 Steer J et al. Thorax 2012, 67(2):117-121

### **Treatment Success**

Neura

KO

Fall in Aitflow Obstruction

Reduce Resistive Load

Dynamic Lune Deflation Reduce Inteshold load Diaphraem Mechanically

Decreases

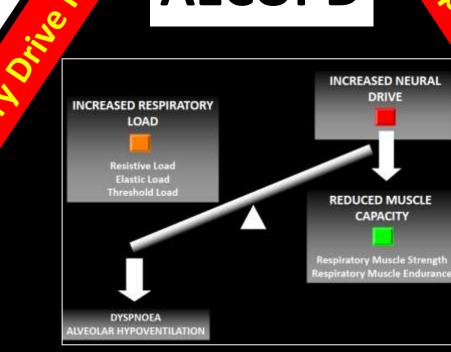
Advantage

AN R

Increase



Omotic une the citeration

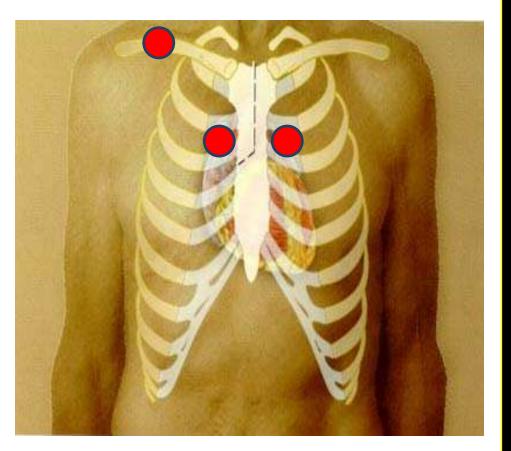

Inclease the stold on a

New Constant

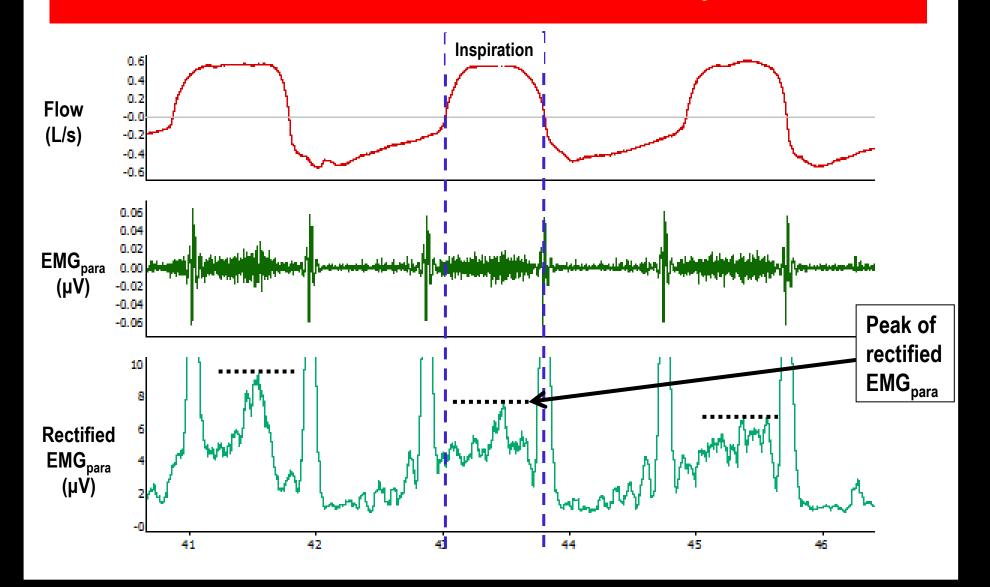
Reduce Consist in the second se

Hills Annon Obstation

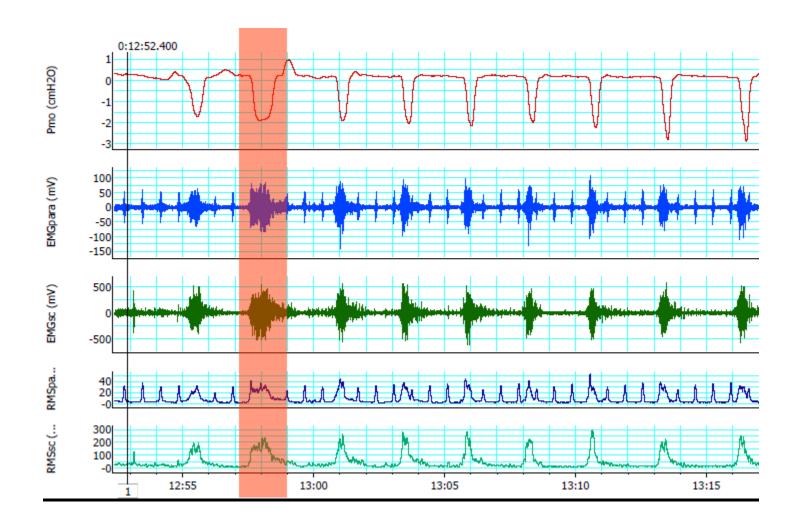
Increase Pesisive Load




AECOPD represent an acute shift in the load-capacity-drive relationship


### **Myotrace - A Non-Invasive Technique**

- 2<sup>nd</sup> Intercostal Parasternal muscles
  - Obligate muscles of inspiration
  - Amenable to surface
     EMG


Hudson AL, Butler JE, Gandevia SC, et al. J Neurophysiol 2010; 103:1622-1629



# Parasternal EMG (EMG<sub>para</sub>)



## **Sniff Manoeuvre**



### **EMGpara%max.RR = NRDI**

### Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD Thera 2011;66:602-608. doi:10.1136/thx.2010.151332

Patrick B Murphy,<sup>1</sup> Atul Kumar,<sup>2</sup> Charles Reilly,<sup>1</sup> Caroline Jolley,<sup>1</sup> Stephan Walterspacher,<sup>2</sup> Fiammetta Fedele,<sup>3</sup> Nicholas S Hopkinson,<sup>4</sup> William D-C Man,<sup>4</sup> Michael I Polkey,<sup>4</sup> John Moxham,<sup>1</sup> Nicholas Hart<sup>5</sup>

| Table 3  | Difference between admission and discharge of measured physiological variables in 30 patients either readmitted (n=9) or not readmitted |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| (n=21) w | vithin 14 days of hospital discharge                                                                                                    |

|                          | ∆MEWS*   | <b>∆FEV</b> <sub>1</sub> † | Previous admissions* | <b>∆EMG</b> <sub>para‰max</sub> | ∆NRDI           |
|--------------------------|----------|----------------------------|----------------------|---------------------------------|-----------------|
| Readmitted               | 0 (-1-2) | 0.09±0.15                  | 4 (0-14)             | 1.98±4.36                       | 76±134          |
| Not readmitted           | 0 (-3-2) | 0.08±0.10                  | 3 (0-10)             | $-4.05 \pm 10.30$               | $-127 \pm 305$  |
| Mean difference (95% CI) |          | 0.1 (0.14 to 0.11)         |                      | 6.03 (11.5 to 0.54)             | 203 (39 to 366) |
| p Value                  | 0.5      | 0.8                        | 0.1                  | 0.03                            | 0.02            |

MYOTRACE 1 - Pilot study Murphy *et al* Thorax 2011

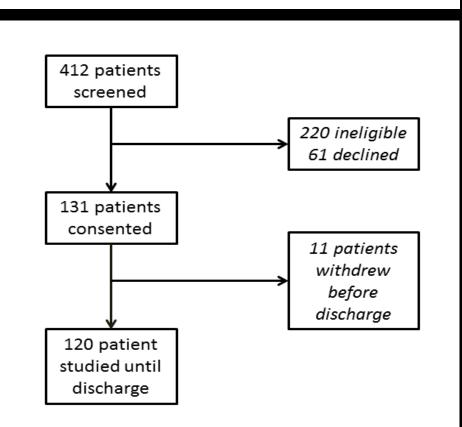
- Limitations
  - Small selected cohort
  - Readmission endpoint was not a priori
  - Subjective assessment of clinical change
  - Small number of data pairs for comparison (37 pairs among 30 patients)

## **MYOTRACE 2 Hypothesis**

Neural respiratory drive predicts early readmission following hospitalisation for acute exacerbation of COPD



ORIGINAL ARTICLE


### Neural respiratory drive predicts clinical deterioration and safe discharge in exacerbations of COPD

Eui-Sik Suh,<sup>1,2</sup> Swapna Mandal,<sup>1,2</sup> Rachel Harding,<sup>1</sup> Michelle Ramsay,<sup>1,2</sup> Meera Kamalanathan,<sup>1</sup> Katherine Henderson,<sup>3</sup> Kevin O'Kane,<sup>4</sup> Abdel Douiri,<sup>5</sup> Nicholas S Hopkinson,<sup>6</sup> Michael I Polkey,<sup>6</sup> Gerrard Rafferty,<sup>2</sup> Patrick B Murphy,<sup>1,2</sup> John Moxham,<sup>2</sup> Nicholas Hart<sup>1,2</sup> Thorax. 2015 Dec;70(12):1123-30

120 patients

completed admissionto-discharge EMG studies, daily IC, spirometry

 >600 individual studies in 122 patients



| Age (years)                               | 70 (9)     |
|-------------------------------------------|------------|
| Male (%)                                  | 58 (48·3)  |
| BMI (kg/m²)                               | 25·3 (7·2) |
| Current smokers (%)                       | 47 (39·2)  |
| Exacerbation frequency (/12 months)       | 3 (1-5)    |
| Hospital admission frequency (/12 months) | 1 (0-2)    |
| Duration of symptoms (days)               | 4 (2-7)    |
| Systemic steroids prior to admission (%)  | 26 (21·7)  |
| Antibiotics prior to admission (%)        | 30 (25·0)  |

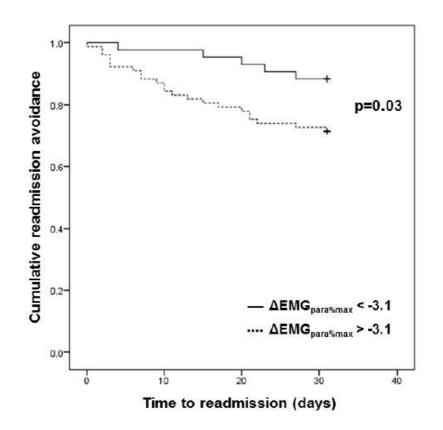
| Age (years)                               | 70 (9)     |
|-------------------------------------------|------------|
| Male (%)                                  | 58 (48·3)  |
| BMI (kg/m²)                               | 25·3 (7·2) |
| Current smokers (%)                       | 47 (39·2)  |
| Exacerbation frequency (/12 months)       | 3 (1-5)    |
| Hospital admission frequency (/12 months) | 1 (0-2)    |
| Duration of symptoms (days)               | 4 (2-7)    |
| Systemic steroids prior to admission (%)  | 26 (21.7)  |
| Antibiotics prior to admission (%)        | 30 (25·0)  |

\_\_\_\_\_

| GOLD stage 2 (%)*              | 4 (4)     |
|--------------------------------|-----------|
| GOLD stage 3 (%)*              | 36 (36)   |
| GOLD stage 4 (%)*              | 60 (60)   |
| MRC dyspnoea grade             | 4 (4-5)   |
| Length of hospital stay (days) | 3 (2-6)   |
| Deaths within 28 days (%)      | 1 (0·8)   |
| Readmission at 28 days (%)     | 26 (21·7) |
| Deaths within 14 days (%)      | 1 (0·8)   |
| Readmission at 14 days (%)     | 15 (12·5) |

\_\_\_\_\_

| GOLD stage 2 (%)*              | 4 (4)                  |
|--------------------------------|------------------------|
| GOLD stage 3 (%)*              | 36 (36)                |
| GOLD stage 4 (%)*              | 60 (60)                |
| MRC dyspnoea grade             | 4 (4-5)                |
| Length of hospital stay (days) | 3 (2-6)                |
| Deaths within 28 days (%)      | 1 (0·8)                |
| Readmission at 28 days (%)     | <mark>26 (21·7)</mark> |
| Deaths within 14 days (%)      | 1 (0·8)                |
| Readmission at 14 days (%)     | 15 (12·5)              |


## MYOTRACE II Readmission Prediction

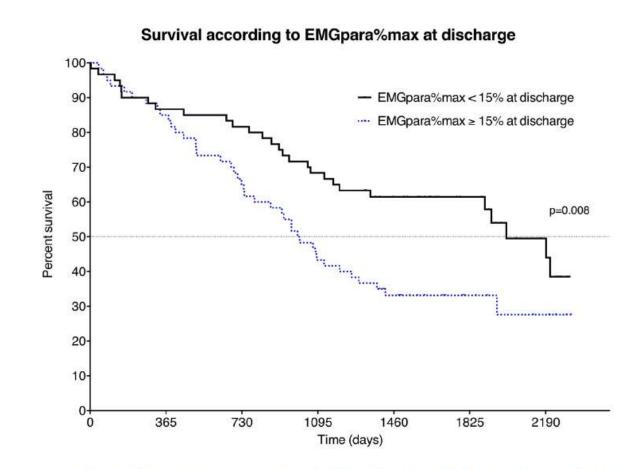


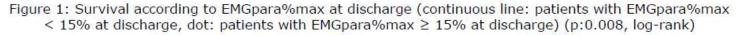
28 Day Readmission ΔEMG<sub>para%max</sub> Under 85 years

Whole group ΔΕΜG<sub>para%max</sub>: OR 1·127, 95% Cl 1·034 to 1·228, p=0·007

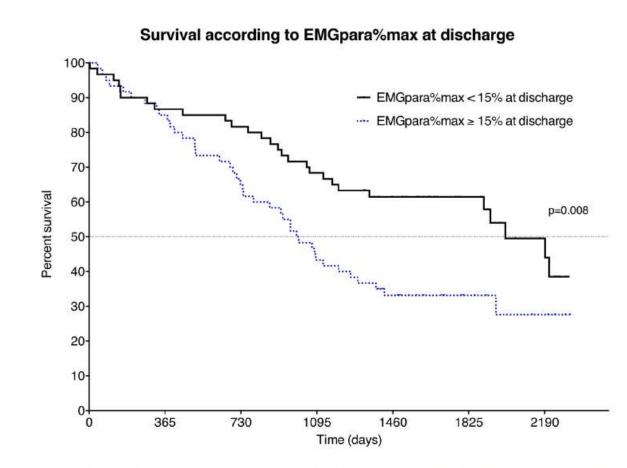
## PREDICTING SAFE DISCHARGE: 14-Day Readmission




ΔEMG<sub>para%max</sub> OR 1·127, 95% Cl 1·034 to 1·228, p=0·007


'The failure of  $\Delta EMG_{para\%max}$  to fall by more than 3.1% between admission and discharge had a sensitivity of 93.8% and a specificity of 41.3% to detect 14-day readmission or death. The positive predictive value (PPV) was 19.7% with a negative predictive value (NPV) of 97.7%'

Time-to-readmission Kaplan-Meier plots for patients whose EMGpara%max fell by more than 3.1% between admission and discharge (solid line), and those whose EMGpara%max fell by less than 3.1% (dotted line).

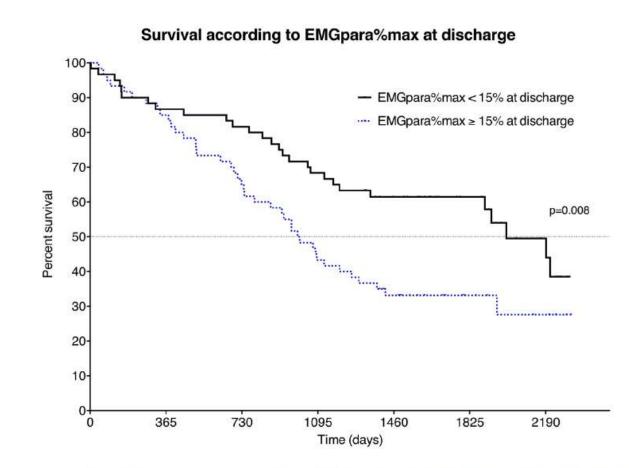

Abbreviations: EMG<sub>para%max</sub> = 1-minute mean magnitude of rectified inspiratory parasternal EMG activity normalised to a maximal manoeuvre

Suh et al Thorax 2015





### Under Review Thorax R1




### Under Review Thorax R1

Figure 1: Survival according to EMGpara%max at discharge (continuous line: patients with EMGpara%max < 15% at discharge, dot: patients with EMGpara%max ≥ 15% at discharge) (p:0.008, log-rank)

#### **Increase Mortality**

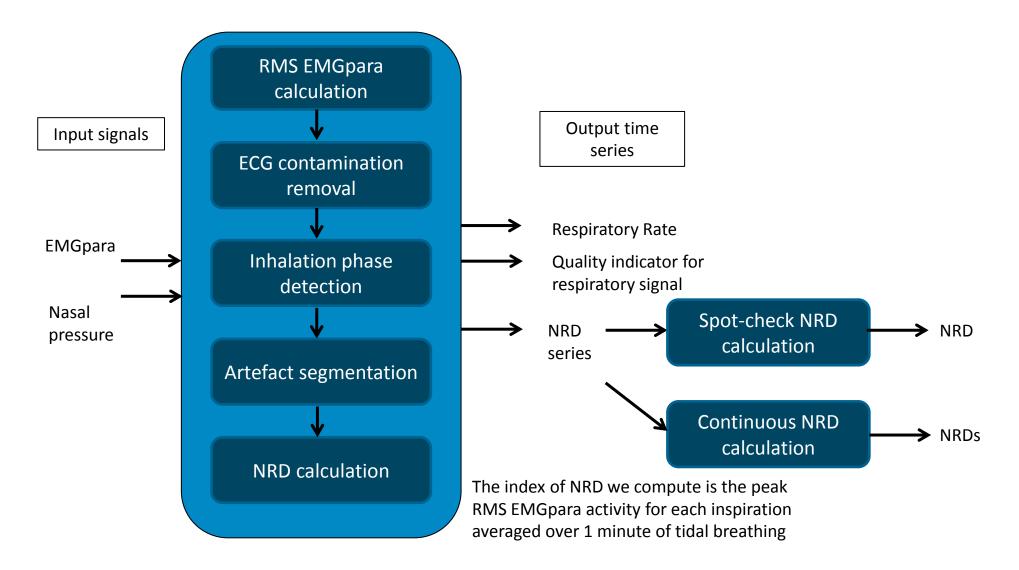
- NRD (HR 2.14 95% CI 1.29 3.54; p =0.003)
- Age (HR 2.03 95% CI 1.23 3.34; p =0.006)
- PaCO2 at admission (HR 1.83 95% CI 1.06 3.06; p =0.02)
- LTOT use (HR 2.98 95% CI 1.47 6.03; p =0.002)



#### Under Review Thorax R1

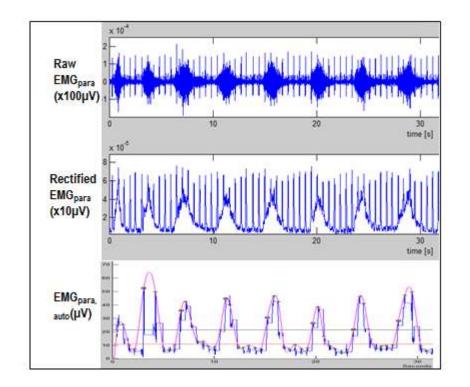
Figure 1: Survival according to EMGpara%max at discharge (continuous line: patients with EMGpara%max < 15% at discharge, dot: patients with EMGpara%max ≥ 15% at discharge) (p:0.008, log-rank)

#### **Increase Mortality**


- NRD (HR 2.14 95% CI 1.29 3.54; p =0.003) **MODIFIABLE FACTOR**
- Age (HR 2.03 95% CI 1.23 3.34; p =0.006)
- PaCO2 at admission (HR 1.83 95% CI 1.06 3.06; p =0.02)
- LTOT use (HR 2.98 95% CI 1.47 6.03; p =0.002)

|     | A<br>RMSpara<br>Time at<br>Maximum |               | C<br>Selection<br>Duration<br>s | D<br>volume<br>Maximum -<br>Minimum<br>L | mBar 🔺 | 1.5 -<br>1.0 -<br>0.5 -<br>0.0 - |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|------------------------------------|---------------|---------------------------------|------------------------------------------|--------|----------------------------------|----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   |                                    | 16.505949950. |                                 | 0.031111044                              | ÷      |                                  |                            |                                         | ·····                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 92  |                                    | 15.569495860. |                                 | 0.031223806                              |        | -0.5 -                           |                            |                                         | ······································                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 93  |                                    | 14.056809090. |                                 | 0.031099767                              | •      |                                  |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 94  | 0:07:57.337                        | 17.132795440. | .24                             | 0.046536889                              |        | 0.10 -                           |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 95  | 0:07:59.5445                       | 15.118399350. | .09                             | 0.017455562                              |        |                                  |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 96  |                                    |               |                                 |                                          |        | 0.05 -                           |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 97  |                                    | 14.982913930. |                                 | 0.031020834                              | >      |                                  | tala waszata waandikan     | and state ( which she ) is the          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 98  |                                    | 15.626732380. |                                 | 0.064195423                              | È      | -0.00 -                          |                            |                                         | in the second | and a static set of the set of the ball of the set of the ball of the set of |
| 99  |                                    | 15.817022560. |                                 | 0.040673264                              |        | -0.05 -                          |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100 | 0:08:08.516                        | 14.841241770. | .19                             | 0.036805526                              |        |                                  |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 101 | 0:08:10.7925                       | 16.118174250. | .15                             | 0.029092603                              | _      | -0.10 -                          |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 102 | 0:08:12.8525                       | 14.997898650. | .23                             | 0.044597382                              | Ð      |                                  |                            | ·····                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 103 | 0:08:15.3255                       | 14.341332670. | .12                             | 0.023319187                              |        | -0.15 -                          |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20  |                                    | 14.043714960. |                                 | 0.030953177                              |        |                                  | /<br>  :   : : :   : :   Y | : : : : : : : : : : : : : : : : : : : : |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 74  |                                    | 15.340758210. |                                 | 0.028923460                              |        | 30 -                             |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 106 | 0:08:22.0625                       | 16.394315180. | .13                             | 0.025100827                              |        | 30 -                             |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 107 | 0:08:24.115                        | 13.441454860. | .25                             | 0.048307253                              |        |                                  |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 108 | 0:08:26.11                         | 15.430643340. | .12                             | 0.023093663                              | Ę      | 20 -                             |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 109 | 0:08:28.562                        | 15.816060020. | .21                             | 0.040402635                              |        | 10                               |                            |                                         | A mult                                                                                                          | N WWY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 110 | 0:08:30.6225                       | 14.416951720. | .18                             | 0.034606667                              |        | 10 -                             | VI IN IV                   | W"                                      | N N N                                                                                                           | NI CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 111 | 0:08:32.8385                       | 16.580493950. | .22                             | 0.042364694                              | •      |                                  | with have                  |                                         | 1. Chi M. M. M                                                                                                  | www.www.www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 112 | 0.08.34 863                        | 14 440145660  | 22                              | 0 042364694                              |        | 0.                               |                            |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|     | A RMSpara<br>Time at  |            |            |               |                                       |
|-----|-----------------------|------------|------------|---------------|---------------------------------------|
|     | Maximum               |            |            |               | DNSUWING                              |
| 1   | 0:12:22.49251         |            |            |               |                                       |
| 92  | 0:07:50:208           |            |            |               |                                       |
| 93  | 0:07:55.28 14.056809  | 090.16 0.0 | .031099767 |               |                                       |
| 94  | 0:07:57.337 17.132795 |            | .046536889 |               |                                       |
| 95  | 0:07:59.544515.118399 |            | .017455562 | 0.10 -        |                                       |
| 96  |                       |            |            | 0.05 -        | · · · · · · · · · · · · · · · · · · · |
| 97  | 0:08:02.104514.982913 | 930.16 0.0 | .031020834 |               |                                       |
| 98  | 0:08:04.667515.626732 |            | .064195423 | ≧ -0.00 ·     |                                       |
| 99  | 0:08:06.686 15.817022 |            | .040673264 |               |                                       |
| 100 |                       |            | .036805526 | -0.05 -       |                                       |
| 101 | 0:08:10.792516.118174 | 250.15 0.0 | .029092603 | -0.10 -       |                                       |
| 102 | 0:08:12.852514.997898 | 650.23 0.0 | .044597382 | <b>±</b> .    |                                       |
| 103 | 0:08:15.325514.341332 | 670.12 0.0 | .023319187 | -0.15 ·       | ·                                     |
| 104 | 0:08:17.844 14.043714 | 960.16 0.  | .030953177 |               |                                       |
| 105 | 0:08:19.964515.340758 | 210.15 0.  | .028923460 | ·             |                                       |
| 106 | 0:08:22.062516.394315 | 180.13 0.0 | .025100827 | 30 -          |                                       |
| 107 | 0:08:24.115 13.441454 | 860.25 0.  | .048307253 |               |                                       |
| 108 | 0:08:26.11 15.430643  | 340.12 0.  | .023093663 | <u>⊰</u> 20 · |                                       |
| 109 | 0:08:28.562 15.816060 | 020.21 0.  | .040402635 | 10 -          |                                       |
| 110 | 0:08:30.622514.416951 | 720.18 0.  | .034606667 |               |                                       |
| 111 | 0:08:32.838516.580493 | 950.22 0.  | .042364694 | • •           |                                       |
| 112 | 0.08.34 863 14 440145 | 660.22 0   | 042364694  | • •           |                                       |


|      | A<br>RMSpara<br>Time at<br>Maximum |           |             |               | )N          | SU   | MI       | NG     |                                       |
|------|------------------------------------|-----------|-------------|---------------|-------------|------|----------|--------|---------------------------------------|
| - 31 | 0:12:22.49251                      |           |             |               |             |      |          |        |                                       |
| 92   | 0:07:52.75851                      |           |             |               | ,           |      |          |        |                                       |
| 93   |                                    | 309090.16 | 0.031099767 | <b>.</b> .    |             |      |          |        |                                       |
| 94   | 0:07:57.337 17.132                 |           | 0.046536889 | 0.10 -        |             | T    |          |        |                                       |
| 95   | 0:07:59.544515.1183                | 399350.09 | 0.017455562 |               |             |      |          |        |                                       |
| 96   |                                    |           |             |               |             |      |          |        |                                       |
| 97   | 0:08:02.10451                      |           |             | _             |             |      |          |        |                                       |
| 98   | 0:08:04.66751                      |           |             |               |             |      |          |        |                                       |
| WW   | 0:08:06.686 1                      |           |             | E             |             |      |          |        |                                       |
| VV   | 0:08:08.516 1<br>0:08:10.79251     |           |             |               |             |      |          |        |                                       |
| WW   | 0:08:10.79251                      |           |             |               |             |      |          |        |                                       |
| 222  | 0:08:12:85251                      |           |             | _             |             |      |          | _      |                                       |
| V.V. | 0:08:17.844 1                      |           |             |               |             |      |          |        |                                       |
| WW   | 0:08:19.96451                      |           |             |               | CA          |      |          |        | · · · · · · · · · · · · · · · · · · · |
| VV   | 0:08:22.06251                      |           |             |               |             |      |          | -<br>- |                                       |
| 00   | 0:08:24.115                        |           |             |               |             |      |          |        |                                       |
| W.   |                                    | 543340.12 | 0.023093663 | <u>≥</u> 20 · |             |      | ······   | A      |                                       |
| WW   | 0:08:28.562 15.8160                |           | 0.040402635 |               |             |      |          | MM L   |                                       |
| VV.  | 0:08:30.622514.4169                |           | 0.034606667 | 10 -          | IN ALA      | ·₩ 🖬 |          | N   N  |                                       |
| 111  | 0:08:32.838516.5804                | 193950.22 | 0.042364694 | • 0-          | have been a |      | J. C. W. | w'w'   | W W                                   |
| 112  | 0·0 <u>8·3</u> 4 863 14 440        | 145660 22 | 0 042364694 |               |             |      |          |        |                                       |

#### Signal processing algorithm





- In collaboration with Philips Research
- Automated algorithm
  - Remove ECG
  - Artefact detection



# WHAT HAVE WE LEARNT?

- Advanced respiratory physiological biomarker to risk stratify AECOPD patients to enhance safe discharge
- Neural respiratory drive is a clinical useful, biomarker that can predict safe discharge in patients following an admission with AECOPD
- Reduction in neural respiratory drive could be used as a therapeutic target
- Translational physiological science is required to design future clinical trials

# WHAT HAVE WE LEARNT?

#### TARGET POPULATION

 AECOPD patients who do not have a fall in neural respiratory drive of 3.1% between admission and discharge are the high risk group

#### • INTERVENTION

 New molecules and targeted drug delivery directed to reduce neural respiratory drive to prevent readmission to hospital

- Mechanistic e.g. Neural respiratory drive
- Patient-Centred e.g. quality of life, functional capacity, physical activity
- Healthcare utilisation e.g. cost utility, cost effectiveness

- TARGET POPULATION
  - AECOPD patients who do not have a fall in neural respiratory drive of 3.1% between admission and discharge are the high risk group

#### • INTERVENTION

 New molecules and targeted drug delivery directed to reduce neural respiratory drive to prevent readmission to hospital

- Mechanistic e.g. Neural respiratory drive
- Patient-Centred e.g. quality of life, functional capacity, physical activity
- Healthcare utilisation e.g. cost utility, cost effectiveness

#### TADCET DODULATION

# THERAPEUTIC TARGET

e.g. NRD

risk group

#### • INTERVENTION

 New molecules and targeted drug delivery directed to reduce neural respiratory drive to prevent readmission to hospital

- Mechanistic e.g. Neural respiratory drive
- Patient-Centred e.g. quality of life, functional capacity, physical activity
- Healthcare utilisation e.g. cost utility, cost effectiveness

#### TADCET DODULATION

#### THERAPEUTIC TARGET

e.g. NRD

risk group

#### **TARGET POPULATION**

#### e.g. severe COPD Patients

neural respiratory drive to prevent readmission to hospital

- Mechanistic e.g. Neural respiratory drive
- Patient-Centred e.g. quality of life, functional capacity, physical activity
- Healthcare utilisation e.g. cost utility, cost effectiveness

#### TADCET DODULATION

#### THERAPEUTIC TARGET

e.g. NRD

<u>risk group</u>

#### **TARGET POPULATION**

#### e.g. severe COPD Patients

#### neural respiratory drive to prevent readmission to hospital THERAPEUTIC INTERVENTION

#### e.g. pharmacological & non-pharmacological

- Patient-Centred e.g. quality of life, functional capacity, physical activity
- Healthcare utilisation e.g. cost utility, cost effectiveness

#### TADCET DODULATION

#### THERAPEUTIC TARGET

e.g. NRD

risk group

#### **TARGET POPULATION**

#### e.g. severe COPD Patients

#### neural respiratory drive to prevent readmission to hospital THERAPEUTIC INTERVENTION

e.g. pharmacological & non-pharmacological

Patient-Controd e.g. quality of life, functional canacity CORE OUTCOME SET

e.g. admission free survival, cost effectiveness

#### A TADOCT DODULATION

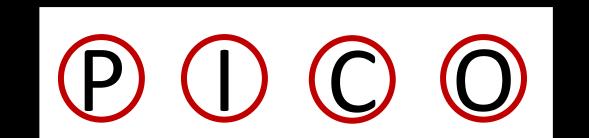
#### THERAPEUTIC TARGET

#### e.g. NRD

# COST & CLINICAL EFFECTIVENESS

Patient-Centred e.g. quality of life functional canacity

#### CORE OUTCOME SET


e.g. admission free survival, cost effectiveness

# CONCLUSION

- Make the measurements
- Interpret the data
- Use the measurements to design the future clinical trials
  - **TARGET POPULATION**
  - INTERVENTION
  - CORE OUTCOME

# **Unstable Post AECOPD Patients**

# Does home NIV improve outcome in hypercaphic COPD patients post exacerbation?



#### Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation

#### A Randomized Clinical Trial June 6, 2017, Vol 317, No. 21, Pages 2149-2248



Patrick B. Murphy, PhD; Sunita Rehal, MSc; Gill Arbane, BSc (Hons); Stephen Bourke, PhD; Peter M. A. Calverley, PhD; Angela M. Crook, PhD; Lee Dowson, MD; Nicholas Duffy, MD; G. John Gibson, MD; Philip D. Hughes, MD; John R. Hurst, PhD; Keir E. Lewis, MD; Rahul Mukherjee, MD; Annabel Nickol, PhD; Nicholas Oscroft, MD; Maxime Patout, MD; Justin Pepperell, MD; Ian Smith, MD; John R. Stradling, PhD; Jadwiga A. Wedzicha, PhD; Michael I. Polkey, PhD; Mark W. Elliott, MD; Nicholas Hart, PhD

American Thoracic Society 2017 JAMA & NEJM Session: Discussions on the Edge Dr Jeff Drazen and Dr George O'Connor 22<sup>nd</sup> May 2017



49 Citations WOS



High Attention Score compared to outputs of the same age (99th percentile) High Attention Score compared to outputs of the same age and source (97th percentile) Top 5% of all research outputs scored by Altmetric

#### **Original Investigation**

Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation: A Randomized Clinical Trial

Patrick B. Marphy, PhD; Samta Rehal, MSc; Gill Arbane, BSc (Hone); et al.

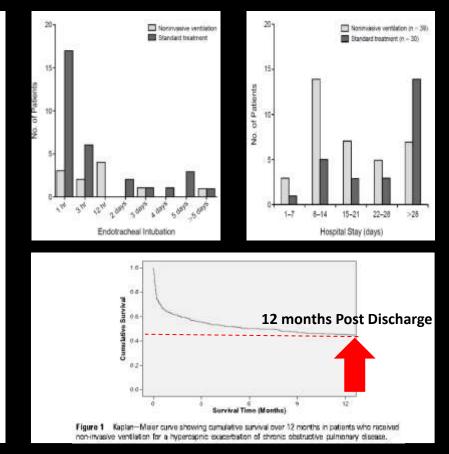
#### Atastract | Full Test

- AMA 2010;012(20:2177-2186, doi:10.1001()errs.2012.440

This randomized clinical trial compares the effects of home copyon therapy with in without home noninvacion vertilation (MP) on time to madmission or double in patients with persistent hypercapits ofter on acute thronic distinctive pelmostry disease (CDPC) exaceduation.

#### Editoria

Home Noninvasive Ventilation to Reduce Readmissions for Chronic Obstructive Palmonary Disease Michael 3, HE, MD, Apin Observal David, MD

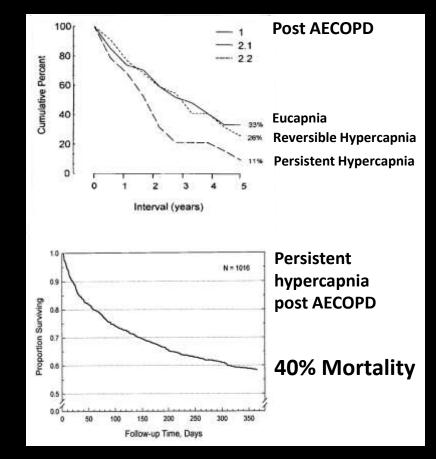

#### 41,965 manuscript views



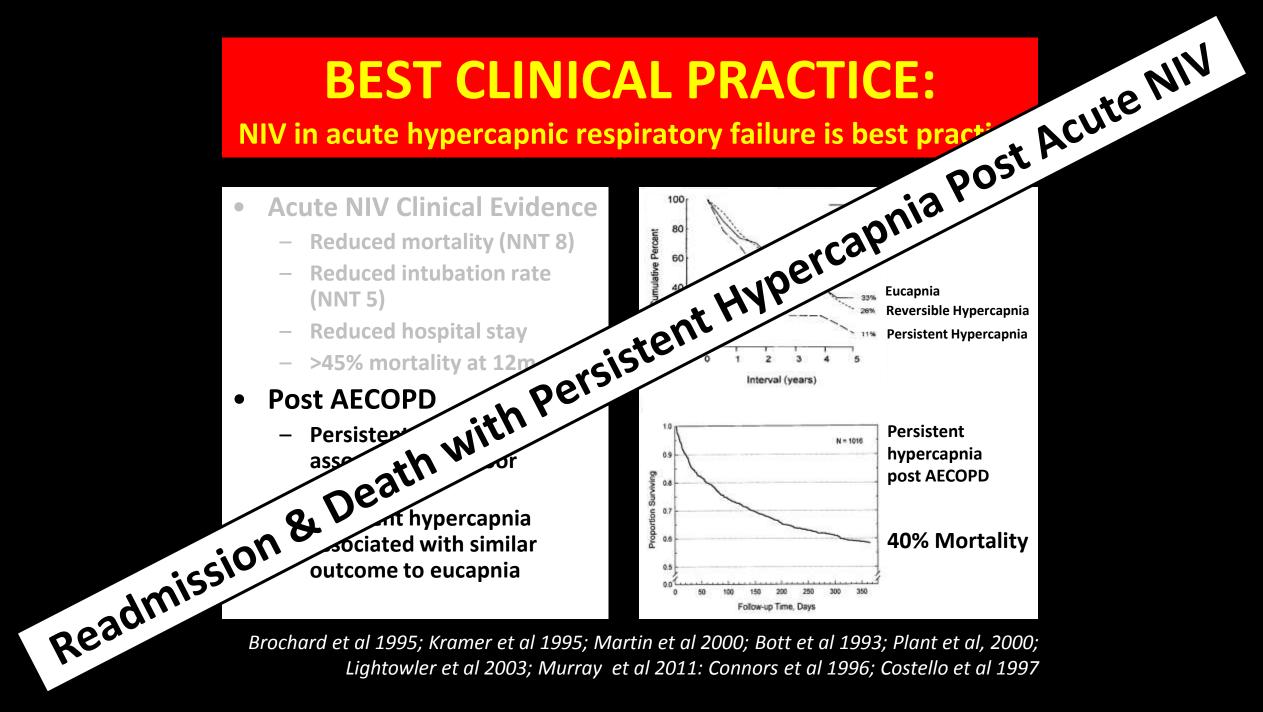
# **BEST CLINICAL PRACTICE:**

#### NIV in acute hypercapnic respiratory failure is best practice

- Acute NIV Clinical Evidence
  - Reduced mortality (NNT 8)
  - Reduced intubation rate (NNT 5)
  - Reduced hospital stay
  - >45% mortality at 12m
- Post AECOPD
  - Persistent hypercapnia associated with poor outcome
  - Transient hypercapnia associated with similar outcome to eucapnia




Brochard et al 1995; Kramer et al 1995; Martin et al 2000; Bott et al 1993; Plant et al, 2000; Lightowler et al 2003; Murray et al 2011: Connors et al 1996; Costello et al 1997


# **BEST CLINICAL PRACTICE:**

NIV in acute hypercaphic respiratory failure is best practice

- Acute NIV Clinical Evidence
  - Reduced mortality (NNT 8)
  - Reduced intubation rate (NNT 5)
  - Reduced hospital stay
  - >45% mortality at 12m
- Post AECOPD
  - Persistent hypercapnia associated with poor outcome
  - Transient hypercapnia associated with similar outcome to eucapnia



Brochard et al 1995; Kramer et al 1995; Martin et al 2000; Bott et al 1993; Plant et al, 2000; Lightowler et al 2003; Murray et al 2011: Connors et al 1996; Costello et al 1997



# HYPOTHESIS

NIV titrated to treat nocturnal hypoventilation and improve admission free survival following an acute life threatening exacerbation of COPD in patients with persisting hypercapnia







# Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation Murphy et al 2017

P

PaCO2>52mmHg 2-4 weeks post acute hypercapnic exacerbation of COPD requiring acute NIV



|                                         | HOT HMV<br>(N=57)   | НОТ<br>(N=59)       | Total<br>(N=116)    |
|-----------------------------------------|---------------------|---------------------|---------------------|
| Age (years)                             | 66.4 (10.2)         | 67.1 (9.0)          | 66.7 (9.6)          |
| Median BMI (kg/m²)                      | 21.5 (18.8 to 24.5) | 22.2 (17.9 to 26.9) | 21.6 (18.2 to 26.1) |
| Prior use of LTOT (n (%))               | 40 (70%)            | 40 (68%)            | 80                  |
| ≥3 COPD related admissions in last year | 30 (53%)            | 31 (53%)            | 61                  |
| Gender (female) (n (%))                 | 29 (51%)            | 32 (54%)            | 61                  |
| Median smoking pack year history        | 42.0 (30.5 to 60.0) | 45.0 (31.0 to 55.0) | 44.0 (31.0 to 60.0) |
| FEV1                                    | 0.6 (0.2)           | 0.6 (0.2)           | 0.6 (0.2)           |
| FEV <sub>1</sub> (%)                    | 24.0 (8.6)          | 22.9 (8.6)          | 23.4 (8.6)          |
| FVC                                     | 1.8 (0.8)           | 1.5 (0.6)           | 1.7 (0.7)           |
| FVC (%)                                 | 57.4 (19.7)         | 49.3 (20.4)         | 53.2 (20.4)         |
| FEV <sub>1</sub> /FVC                   | 0.3 (0.1)           | 0.4 (0.1)           | 0.4 (0.1)           |
| PaO <sub>2</sub> on room air (kPa)      | 6.4 (1.2)           | 6.4 (1.1)           | 6.4 (1.1)           |
| PaCO <sub>2</sub> on room air (kPa)     | 7.9 (0.9)           | 7.9 (0.9)           | 7.9 (0.9)           |
| pH 7.30-7.35 n (%)                      | 5 (9%)              | 2 (3%)              | 7 (6%)              |
| Median SGRQ summary                     | 74.7 (63.7 to 81.7) | 71.0 (62.6 to 78.6) | 73.8 (63.3 to 80.3) |
| SRI summary                             | 45.8 (15.0)         | 46.9 (15.6)         | 46.4 (15.2)         |
| Median MRC dyspnoea score               | 5.0 (4.0 to 5.0)    | 5.0 (4.0 to 5.0)    | 5.0 (4.0 to 5.0)    |



|                                         | HOT HMV<br>(N=57)   | НОТ<br>(N=59)       | Total<br>(N=116)    |
|-----------------------------------------|---------------------|---------------------|---------------------|
| Age (years)                             | 66.4 (10.2)         | 67.1 (9.0)          | 66.7 (9.6)          |
| Median BMI (kg/m²)                      | 21.5 (18.8 to 24.5) | 22.2 (17.9 to 26.9) | 21.6 (18.2 to 26.1) |
| Prior use of LTOT (n (%))               | 40 (70%)            | 40 (68%)            | 80                  |
| ≥3 COPD related admissions in last year | 30 (53%)            | 31 (53%)            | 61                  |
| Gender (female) (n (%))                 | 29 (51%)            | 32 (54%)            | 61                  |

- Severe COPD
- Following a life threatening exacerbation of COPD requiring acute NIV
- Chronic hypercaphic respiratory failure (PaCO<sub>2</sub> > 52mmHg) 2-4 weeks post AECOPD
- Without other significant cause of sleep disordered breathing / respiratory failure
- Intervention administered in the recovery phase

| PaCO <sub>2</sub> on room air (kPa) | 7.9 (0.9)           | 7.9 (0.9)           | 7.9 (0.9)           |
|-------------------------------------|---------------------|---------------------|---------------------|
| pH 7.30-7.35 n (%)                  | 5 (9%)              | 2 (3%)              | 7 (6%)              |
| Median SGRQ summary                 | 74.7 (63.7 to 81.7) | 71.0 (62.6 to 78.6) | 73.8 (63.3 to 80.3) |
| SRI summary                         | 45.8 (15.0)         | 46.9 (15.6)         | 46.4 (15.2)         |
| Median MRC dyspnoea score           | 5.0 (4.0 to 5.0)    | 5.0 (4.0 to 5.0)    | 5.0 (4.0 to 5.0)    |



# Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation Murphy et al 2017

P

PaCO2>52mmHg 2-4 weeks post acute hypercapnic exacerbation of COPD requiring acute NIV

> Standard COPD Treatment & home NIV & HOT n=59



| Visit                                                | Number of<br>patients included<br>in analyses   |                                   | Mean (95% CI)                                     |                                     | Treatment effect within each group<br>(mean difference from baseline<br>(95%CI)) |                                  | Treatment<br>effect (Mean<br>between group<br>difference from<br>baseline (95%<br>CI)) | P-value | Treatment effect<br>(Mean between<br>group difference<br>from baseline<br>(95% CI)) | P-value |
|------------------------------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------|---------|
|                                                      | Home<br>Oxygen<br>Therapy<br>and<br>Home<br>NIV | Home<br>Oxyge<br>n<br>therap<br>y | Home NIV<br>& home<br>oxygen<br>therapy<br>(mmHg) | Home<br>oxygen<br>therapy<br>(mmHg) | Home NIV &<br>home oxygen<br>therapy<br>(mmHg)                                   | Home oxygen<br>therapy<br>(mmHg) | Adjusted for<br>baseline effect <sup>a</sup><br>(95% CI)                               |         | Adjusted effect <sup>b</sup><br>(95% CI)                                            |         |
| Mean tcC                                             | $CO_2$                                          |                                   |                                                   |                                     | 1                                                                                |                                  | 1                                                                                      |         |                                                                                     |         |
| Baselin<br>e <sup>c</sup><br>(pre-<br>treatme<br>nt) | 57                                              | 59                                | 65<br>(62 to 67)                                  | 65<br>(63 to 67)                    |                                                                                  |                                  |                                                                                        |         |                                                                                     |         |
| Day 1<br>(on<br>treatme<br>nt)                       | 45                                              | 46                                | 56<br>(53 to 59)                                  | 65<br>(62 to 67)                    | -8.9<br>(-11.7 to -6.2)                                                          | 0.8<br>(-0.5 to 0.7)             | -8.9<br>(-11.4 to -6.5)                                                                | <.001   | -9.1<br>(-11.6 to -6.6)                                                             | <.001   |
| 6<br>months                                          | 24                                              | 16                                | 53<br>(48 to 58)                                  | 56<br>(50 to 62)                    | -14.3<br>(-19.7 to -8.9)                                                         | -8.6<br>(-15.2 to -1.9)          | -2.0<br>(-8.8 to 4.7)                                                                  | .56     | -4.7<br>(-11.6 to 2.3)                                                              | .18     |
| 12<br>months                                         | 24                                              | 19                                | 50<br>(44 to 55)                                  | 61<br>(56 to 66)                    | -16.6<br>(-21.5 to -<br>11.6)                                                    | -4.4<br>(-10.1 to 1.4)           | -10.8<br>(-16.8 to -4.9)                                                               | <.001   | -10.7<br>(-16.4 to -5.1)                                                            | <.001   |

months: **11**mmHg difference between HOT-HMV and HOT treatment (17% reduction)

# Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation Murphy et al 2017

P

PaCO2>52mmHg 2-4 weeks post acute hypercapnic exacerbation of COPD requiring acute NIV

> Standard COPD Treatment & home NIV & HOT

n=59





# Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation Murphy et al 2017

P

PaCO2>52mmHg 2-4 weeks post acute hypercapnic exacerbation of COPD requiring acute NIV



Primary Outcome:

Time to readmission or death

Standard COPD Treatment & home NIV & HOT n=59 Standard COPD





# Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation Murphy et al 2017

P

PaCO2>52mmHg 2-4 weeks post acute hypercapnic exacerbation of COPD requiring acute NIV

n=59

n=57

**Standard COPD** 

Treatment & HOT

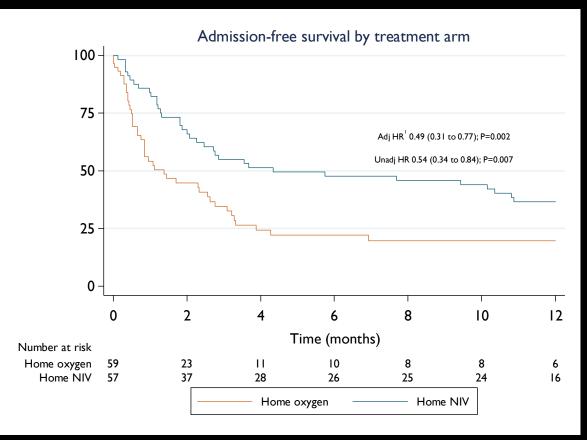


**Primary Outcome:** Time to readmission or death

Standard COPD Treatment & home NIV & HOT

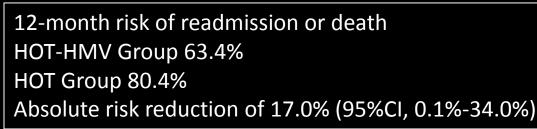
4.3 months (IQR 1.3-13.8)

Adjusted hazard ratio of 0.49 (95% CI, 0.31-0.77; *p* = 0.002)


1.4 months (IQR 0.5-3.9)

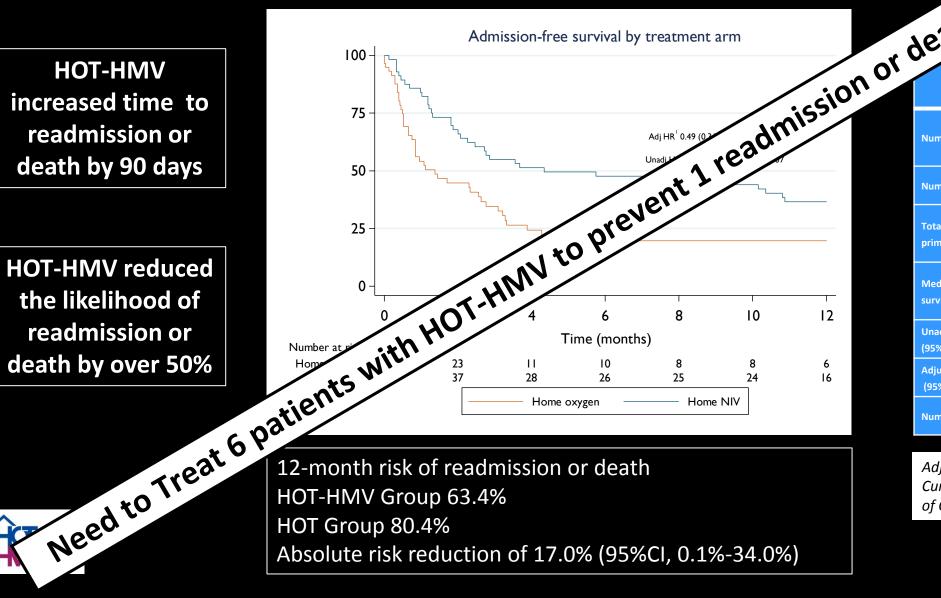


### **PRIMARY OUTCOME**


HOT-HMV increased time to readmission or death by 90 days

HOT-HMV reduced the likelihood of readmission or death by over 50%

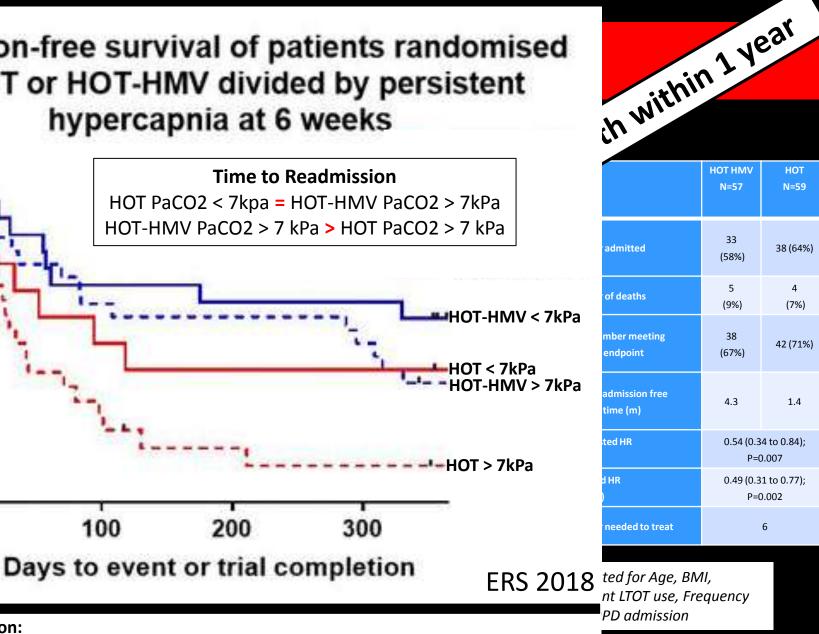



|                                            | HOT HMV<br>N=57 | НОТ<br>N=59          |
|--------------------------------------------|-----------------|----------------------|
| Number admitted                            | 33<br>(58%)     | 38 (64%)             |
| Number of deaths                           | 5<br>(9%)       | 4<br>(7%)            |
| Total number meeting<br>primary endpoint   | 38<br>(67%)     | 42 (71%)             |
| Median admission free<br>survival time (m) | 4.3             | 1.4                  |
| Unadjusted HR<br>(95% CI)                  |                 | 4 to 0.84);<br>).007 |
| Adjusted HR<br>(95% Cl)                    |                 | 1 to 0.77);<br>).002 |
| Number needed to treat                     |                 | 6                    |

Adjusted for Age, BMI, Current LTOT use, Frequency of COPD admission






#### **PRIMARY OUTCOME**



|   |                                            | 1.45            | ear                   |
|---|--------------------------------------------|-----------------|-----------------------|
|   | seath within                               |                 |                       |
| Y |                                            | HOT HMV<br>N=57 | HOT<br>N=59           |
|   | Number admitted                            | 33<br>(58%)     | 38 (64%)              |
|   | Number of deaths                           | 5<br>(9%)       | 4<br>(7%)             |
|   | Total number meeting<br>primary endpoint   | 38<br>(67%)     | 42 (71%)              |
|   | Median admission free<br>survival time (m) | 4.3             | 1.4                   |
|   | Unadjusted HR<br>(95% CI)                  | •               | 94 to 0.84);<br>0.007 |
|   | Adjusted HR<br>(95% Cl)                    | •               | 91 to 0.77);<br>0.002 |
|   | Number needed to treat                     |                 | 6                     |

Adjusted for Age, BMI, Current LTOT use, Frequency of COPD admission

#### Admission-free survival of patients randomised to HOT or HOT-HMV divided by persistent hypercapnia at 6 weeks



HOT HMV

N=57

33

(58%)

5

(9%)

38

(67%)

4.3

НОТ

N=59

38 (64%)

4

(7%)

42 (71%)

1.4

0.54 (0.34 to 0.84): P=0.007

0.49 (0.31 to 0.77); P=0.002

6

**HOT-HMV** increased time to readmission or death by 90 days

100

50-

Time to readmission:

Percent surviva

**HOT-HMV** reduced the likelihood of readmission or death by over 50%

Need to Trei

Persistent hypercapnia treated with HOT-HMV vs. persistent hypercapnia treated with HOT 302d v 38d, HR 0.44, 95%CI 0.22 to 0.88, p=0.008

# Is HOT-HMV treatment cost effective?

Manuscript Under Review



# **Patient-Level Medical Resource Utilization**

- Equipment (oxygen concentrators and home NIV devices, including maintenance and support)
- Physician contacts and hospital admissions due to exacerbations
- Patient reported medications
- Additional primary and secondary care contacts
- Costs calculated at the patient level by multiplying observed MRU by standard unit costs (£2017) from a National Health Service

# OUTCOME

 Quality adjusted life years (QALYs) estimated based on EuroQOL-5D data



|                                          | Intervention Group (n=57) | Control Group (n=59) | Difference |
|------------------------------------------|---------------------------|----------------------|------------|
| Total device costs                       | £6,679                    | £2,684               | £3,995     |
| NIV device                               | £4,814                    | £1,412               | £3,402     |
| Diagnostic tests                         | £467                      | £467                 | £0         |
| Titration                                | £531                      | £156                 | £375       |
| Oxygen supply                            | £868                      | £649                 | £218       |
| Total exacerbation costs                 | £4,679                    | £5,821               | -£1,141    |
| Admission                                | £4,624                    | £5,791               | -£1,167    |
| Physician treatment                      | £51                       | £28                  | £23        |
| Self treatment                           | £4                        | £1                   | £2         |
| Total patient reported costs             | £6,044                    | £8,381               | -£2,337    |
| Increased steroid inhaler usage          | £1                        | £5                   | -£5        |
| Increased reliever inhaler usage         | £43                       | £67                  | -£24       |
| Steroid tablets                          | £10                       | £8                   | £2         |
| Antibiotics treatment                    | £43                       | £25                  | £18        |
| Additional primary/secondary care visits | £5,947                    | £8,275               | -£2,328    |
| Total costs                              | £17,403                   | £16,885              | £518       |
| Total QALYs                              | 0.3600                    | 0.3100               | 0.0500     |



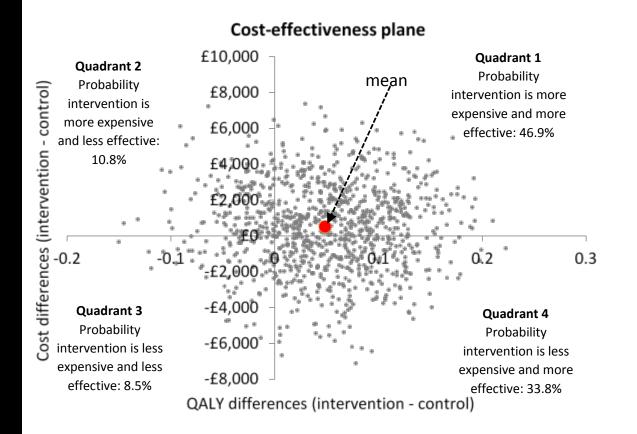
|                                          | Intervention Group (n=57) | Control Group (n=59) | Difference |
|------------------------------------------|---------------------------|----------------------|------------|
| Total device costs                       | £6,679                    | £2,684               | £3,995     |
| NIV device                               | £4,814                    | £1,412               | £3,402     |
| Diagnostic tests                         | £467                      | £467                 | £0         |
| Titration                                | £531                      | £156                 | £375       |
| Oxygen supply                            | £868                      | £649                 | £218       |
| Total exacerbation costs                 | £4,679                    | £5,821               | -£1,141    |
| Admission                                | £4,624                    | £5,791               | -£1,167    |
| Physician treatment                      | £51                       | £28                  | £23        |
| Self treatment                           | £4                        | £1                   | £2         |
| Total patient reported costs             | £6,044                    | £8,381               | -£2,337    |
| Increased steroid inhaler usage          | £1                        | £5                   | -£5        |
| Increased reliever inhaler usage         | £43                       | £67                  | -£24       |
| Steroid tablets                          | £10                       | £8                   | £2         |
| Antibiotics treatment                    | £43                       | £25                  | £18        |
| Additional primary/secondary care visits | £5,947                    | £8,275               | -£2,328    |
| Total costs                              | £17,403                   | £16,885              | £518       |
| Total QALYs                              | 0.3600                    | 0.3100               | 0.0500     |

#### **ADVERSE: Device Costs**



FAVOURABLE: Exacerbation Costs FAVOURABLE: Patient Reported Costs

|                                          | Intervention Group (n=57) | Control Group (n=59) | Difference |
|------------------------------------------|---------------------------|----------------------|------------|
| Total device costs                       | £6,679                    | £2,684               | £3,995     |
| NIV device                               | £4,814                    | £1,412               | £3,402     |
| Diagnostic tests                         | £467                      | £467                 | £0         |
| Titration                                | £531                      | £156                 | £375       |
| Oxygen supply                            | £868                      | £649                 | £218       |
| Total exacerbation costs                 | £4,679                    | £5,821               | -£1,141    |
| Admission                                | £4,624                    | £5,791               | -£1,167    |
| Physician treatment                      | £51                       | £28                  | £23        |
| Self treatment                           | £4                        | £1                   | £2         |
| Total patient reported costs             | £6,044                    | £8,381               | -£2,337    |
| Increased steroid inhaler usage          | £1                        | £5                   | -£5        |
| Increased reliever inhaler usage         | £43                       | £67                  | -£24       |
| Steroid tablets                          | £10                       | £8                   | £2         |
| Antibiotics treatment                    | £43                       | £25                  | £18        |
| Additional primary/secondary care visits | £5,947                    | £8,275               | -£2,328    |
| Total costs                              | £17,403                   | £16,885              | £518       |
| Total QALYs                              | 0.3600                    | 0.3100               | 0.0500     |


#### ADVERSE: Total Costs £518

#### FAVOURABLE: QALYs (0.05) FAVOURABLE: Cost per QALY £10,360

|                                  | Intervention Group (n=57)                                                                                                  | Control Group (n=59)                                                                                               | Differen |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|
| Total device costs               | £6,679                                                                                                                     | £2,684                                                                                                             |          |
| NIV device                       | £4,814                                                                                                                     | £1,412                                                                                                             | anti-    |
| Diagnostic tests                 | £467                                                                                                                       | £467                                                                                                               | TN       |
| Titration                        | £531                                                                                                                       | £156                                                                                                               | 1375     |
| Oxygen supply                    | £868                                                                                                                       | Control Group (n=59)<br>£2,684<br>£1,412<br>£467<br>£156<br>£6<br>£6<br>£6<br>£1<br>£1<br>£1<br>£1<br>£8,381<br>£5 | £218     |
| Total exacerbation costs         | £4,679                                                                                                                     |                                                                                                                    | -£1,141  |
| Admission                        | £4,624                                                                                                                     |                                                                                                                    | -£1,167  |
| Physician treatment              | £51                                                                                                                        |                                                                                                                    | £23      |
| Self treatment                   | £4                                                                                                                         | f1                                                                                                                 | £2       |
| Total patient reported costs     |                                                                                                                            | £8,381                                                                                                             | -£2,337  |
| Increased steroid inhaler usage  |                                                                                                                            | £5                                                                                                                 | -£5      |
| Increased reliever inhaler usage |                                                                                                                            | £67                                                                                                                | -£24     |
| Steroid tablets                  |                                                                                                                            | £8                                                                                                                 | £2       |
| Antibiotics treatment            | £43                                                                                                                        | £25                                                                                                                | £18      |
| Additional primary/servisits     | <b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>7</b><br><b>6</b><br><b>17</b> ,403 | £8,275                                                                                                             | -£2,328  |
| Total co                         | £17,403                                                                                                                    | £16,885                                                                                                            | £518     |
| 1-11                             | 0.3600                                                                                                                     | 0.3100                                                                                                             | 0.0500   |

Wise: Total Costs £518

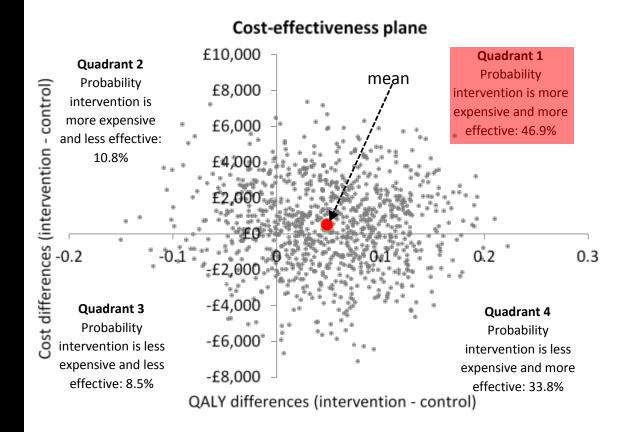
FAVOURABLE: QALYs (0.05) FAVOURABLE: Cost per QALY £10,360 Figure 1a Cost-effectiveness plane for home non-invasive ventilation with home oxygen therapy vs. home oxygen therapy alone (UK intention to treat analysis)





Effe

Vore





#### **More Expensive**

Less Expensive



Figure 1a Cost-effectiveness plane for home non-invasive ventilation with home oxygen therapy vs. home oxygen therapy alone (UK intention to treat analysis)







|                                             | Intervention Group (n=57) | Control Group (n=59) | Δ        |
|---------------------------------------------|---------------------------|----------------------|----------|
| Total device costs                          | \$4,298                   | \$1,582              | \$2,715  |
| NIV device                                  | \$2,867                   | \$673                | \$2,194  |
| Diagnostic tests                            | \$172                     | \$172                | \$0.00   |
| Titration                                   | \$463                     | \$136                | \$327    |
| Oxygen supply                               | \$795                     | \$602                | \$194    |
| Total exacerbation costs                    | \$8,598                   | \$10,683             | -\$2,086 |
| Admission                                   | \$8,495                   | \$10,638             | -\$2,144 |
| Physician treatment                         | \$36                      | \$19                 | \$16     |
| Self treatment                              | \$67                      | \$26                 | \$42     |
| Total patient reported costs                | \$11,563                  | \$16,121             | -\$4,558 |
| Increased steroid inhaler<br>usage          | \$56                      | \$438                | \$947    |
| Increased reliever inhaler<br>usage         | \$88                      | \$137                | \$208    |
| Steroid tablets                             | \$558                     | \$465                | \$692    |
| Antibiotics treatment                       | \$56                      | \$47                 | \$77     |
| Additional primary/secondary<br>care visits | \$10,805                  | \$15,033             | \$18,389 |
| Total costs                                 | \$24,458                  | \$28,386             | -\$3,928 |
| Total QALYs                                 | 0.49                      | 0.41                 | 0.08     |



|                                             | Intervention Group (n=57) | Control Group (n=59) | Δ        |
|---------------------------------------------|---------------------------|----------------------|----------|
| Total device costs                          | \$4,298                   | \$1,582              | \$2,715  |
| NIV device                                  | \$2,867                   | \$673                | \$2,194  |
| Diagnostic tests                            | \$172                     | \$172                | \$0.00   |
| Titration                                   | \$463                     | \$136                | \$327    |
| Oxygen supply                               | \$795                     | \$602                | \$194    |
| Total exacerbation costs                    | \$8,598                   | \$10,683             | -\$2,086 |
| Admission                                   | \$8,495                   | \$10,638             | -\$2,144 |
| Physician treatment                         | \$36                      | \$19                 | \$16     |
| Self treatment                              | \$67                      | \$26                 | \$42     |
| Total patient reported costs                | \$11,563                  | \$16,121             | -\$4,558 |
| Increased steroid inhaler<br>usage          | \$56                      | \$438                | \$947    |
| Increased reliever inhaler<br>usage         | \$88                      | \$137                | \$208    |
| Steroid tablets                             | \$558                     | \$465                | \$692    |
| Antibiotics treatment                       | \$56                      | \$47                 | \$77     |
| Additional primary/secondary<br>care visits | \$10,805                  | \$15,033             | \$18,389 |
| Total costs                                 | \$24,458                  | \$28,386             | -\$3,928 |
| Total QALYs                                 | 0.49                      | 0.41                 | 0.08     |



|                    | Intervention Group (n=57) | Control Group (n=59) | Δ       |
|--------------------|---------------------------|----------------------|---------|
| Total device costs | \$4,298                   | \$1,582              | \$2,715 |
| NIV device         | \$2,867                   | \$673                | \$2,194 |
| Diagnostic tests   | \$172                     | \$172                | \$0.00  |
| Titration          | \$463                     | \$136                | \$327   |
| Oxygen supply      | \$795                     | \$602                | \$194   |
|                    |                           |                      |         |

#### Incremental Cost Effectiveness Ratio (ICER)/ Cost per QALY gained of \$-50,856

| Total patient reported costs             | \$11,503 | \$10,121          | -\$4,558 |
|------------------------------------------|----------|-------------------|----------|
| Increased steroid inhaler<br>usage       | \$56     | \$438             | \$947    |
| Increased reliever inhaler<br>usage      | \$88     | \$137             | \$208    |
| Steroid tablets                          | \$558    | \$465             | \$692    |
| Antibiotics treatment                    | \$56     | \$47              | \$77     |
| Additional primary/secondary care visits | \$10,805 | \$15,033          | \$18,389 |
| Total costs                              | \$24,458 | \$28 <i>,</i> 386 | -\$3,928 |
| Total QALYs                              | 0.49     | 0.41              | 0.08     |



|                                            | Intervention Group (n=57)                                            | Control Group (n=59)                                                                           | Δ                   |
|--------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|
| Total device costs Figure 3                | Cost-effectiveness plane for home non                                | -invasive ventilation with home oxy                                                            | gen therapy \$8,505 |
| NIV device vs. hom                         | e oxygen therapy alone (US intention to                              | treat analysis)                                                                                | \$7,984             |
| Diagnostic tests                           | Cost-effectiveness plar                                              |                                                                                                | \$0.00              |
| litration                                  | uadrant 2 \$25,000<br>robability cao ooo mej                         | Quadrant 1<br>An Probability                                                                   | \$327               |
| Oxygen supply                              | expensive \$15,000                                                   | <ul> <li>intervention is more</li> <li>expensive and more</li> <li>effective: 46.9%</li> </ul> | \$194               |
| Total exacerbation c                       | ess effective:<br>10.8% \$10,000                                     | enective: 40.5%                                                                                | -\$2,086            |
| Admission                                  | \$5,000                                                              |                                                                                                | -\$2,144            |
| Physician treatmer                         | -0.1 -\$5,000 0                                                      | 0.2 0.3                                                                                        | \$16                |
| Self treatment                             | -\$10,000                                                            |                                                                                                | \$42                |
| Total patient report                       | -\$15,000 -<br>Quadrant 3                                            | Quadrant 4                                                                                     | -\$4,558            |
| Increased steroid in                       | -\$20,000 -<br>Probability<br>rvention is less -\$25,000 -           | Probability<br>intervention is less                                                            | \$947               |
|                                            | ensive and less<br>fective: 8.5%<br>QALY differences (intervention - | expensive and more<br>effective: 33.8%<br>- control)                                           | \$208               |
| Steroid tablets                            | on: QALY=quality adjusted life year                                  |                                                                                                | \$692               |
| Antibiotics treatment                      | סכל                                                                  | \$47                                                                                           | \$77                |
| Additional primary/secondar<br>care visits | y \$10,805                                                           | \$15,033                                                                                       | \$18,389            |
| Total costs                                | \$32,024                                                             | \$30,162                                                                                       | \$1,861             |
| Total QALYs                                | 0.4874                                                               | 0.4101                                                                                         | 0.0772              |



Does home NIV improve outcome in hypercapnic COPD patients post exacerbation?

# Does home NIV improve outcome in hypercapnic COPD patients post exacerbation?

- HOT-HMV data supports the initiation of NIV in COPD patients who remain persistently hypercapnic 2-4 weeks after cessation of acute NIV
- If the PaCO2 is > 52 mmHg and the PaO2 < 55 mmHg at 2-4 weeks after cessation of acute NIV this should prompt the clinician to consider initiating HMV in addition to HOT
- HOT-HMV is a cost-effective treatment in the UK and more effective and less costly compared to oxygen therapy alone in the US

# Does home NIV improve outcome in hypercapnic COPD patients post exacerbation?

HOT-HMV data supports the remain persistently hyper NIV

of NIV in COPD patients who eks after cessation of acute

- If the PaCO2 is > 52 mmHg and \_\_\_\_aO2 < 55 mmHg at 2-4 weeks after cessation of acute NIV this should prompt the clinician to consider initiating HMV in addition to HOT
- HOT-HMV is a cost-effective treatment in the UK and more effective and less costly compared to oxygen therapy alone in the US

### Table 3.10. Oxygen therapy and ventilatory support in stable COPD Oxygen therapy

- The long-term administration of oxygen increases survival in patients with severe chronic resting arterial hypoxemia **(Evidence A)**.
- In patients with stable COPD and moderate resting or exercise-induced arterial desaturation, prescription of long-term oxygen does not lengthen time to death or first hospitalization or provide sustained benefit in health status, lung function and 6-minute walk distance (Evidence A).
- Resting oxygenation at sea level does not exclude the development of severe hypoxemia when traveling by air (Evidence C).
   Ventilatory support
- NPPV may improve hospitalization-free survival in selected patients after recent hospitalization, particularly in those with pronounced daytime persistent hypercapnia ( $PaCO_2 \ge 52 \text{ mmHg}$ ) (Evidence B).

#### Non-invasive ventilation

1.2.70 Refer people who are adequately treated but have chronic hypercapnic respiratory failure and have needed assisted ventilation (whether invasive or non-invasive) during an exacerbation, or who are hypercapnic or acidotic on long-term oxygen therapy, to a specialist centre for consideration of long-term non-invasive ventilation. [2004]

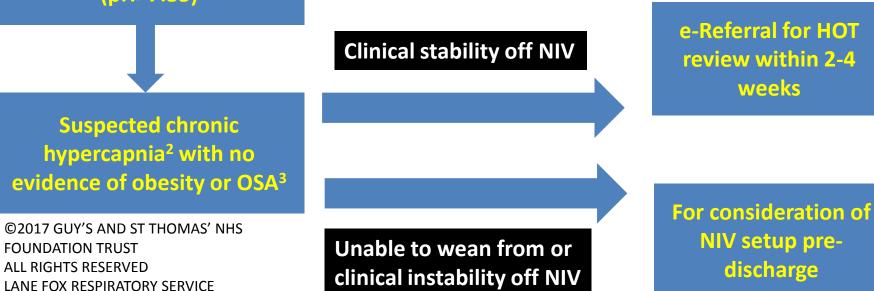
GOLD COPD



- Detailed PICO evaluation ensures the right patient receives right treatment at the right time in the right environment
- HOT-HMV treatment has been shown to be clinically effective to improve outcome and cost effective in COPD patients with persistent hypercapnia post lifethreatening exacerbation
- GOLD 2018 and NICE 2018 has systematically and comprehensively graded providing support for the use of HOT-HMV post life-threatening acute exacerbation of COPD

#### COPD Post Acute NIV pathway

Acute exacerbation of COPD<sup>1</sup> requiring NIV (pH<7.35, PaCO2>6kPa)


Patient able to tolerate NIV with clinical improvement (pH>7.35)

## Guy's and St Thomas' NHS

**NHS Foundation Trust** 

- 1. Diagnosis of COPD
  - a. Established diagnosis of COPD (FEV1/FVC <0.7) OR
  - b. Suspected clinical diagnosis of COPD (>10 pack year history, progressive dyspnoea, cough, sputum, recurrent LRTI)
- 2. Features of chronic persistent hypercapnia
  - a. Admission cBE >2 / cHCO<sub>3</sub> >28 mmol/L
  - b. PaCO<sub>2</sub> > 7kPa 2 weeks post resolution of respiratory acidosis

#### Google 'Lane Fox Unit'/SPECIALITIES TAB



## CONCLUSION

- Admission prevention in COPD is a priority for patients, clinicians and healthcare
- Measuring neural respiratory drive may be useful to risk stratify COPD in terms of promoting safe discharge and reducing readmission
- If the PaCO2 is > 52 mmHg and the PaO2 < 55 mmHg at 2-4 weeks after cessation of acute NIV this should prompt the clinician to consider initiating HMV in addition to HOT
- HOT-HMV is a cost-effective treatment in the UK and more effective and less costly compared to oxygen therapy alone in the US

## CONCLUSION

- Admission prevention in COPD is a priority for patients, clinicians and healthcare
   Measuring RIGHT PATIENT 
   COPD in to DUCUT TURKE
- COPD in te If the PaCe after cessa consider ii RIGHT ENVIRONMENT
- HOT-HMV is a cost-enective treatment in the ox and more effective and less costly compared to oxygen therapy alone in the US

#### With thanks to...













#### The patients













#### Lane Fox Clinical Respiratory Physiology Research Centre

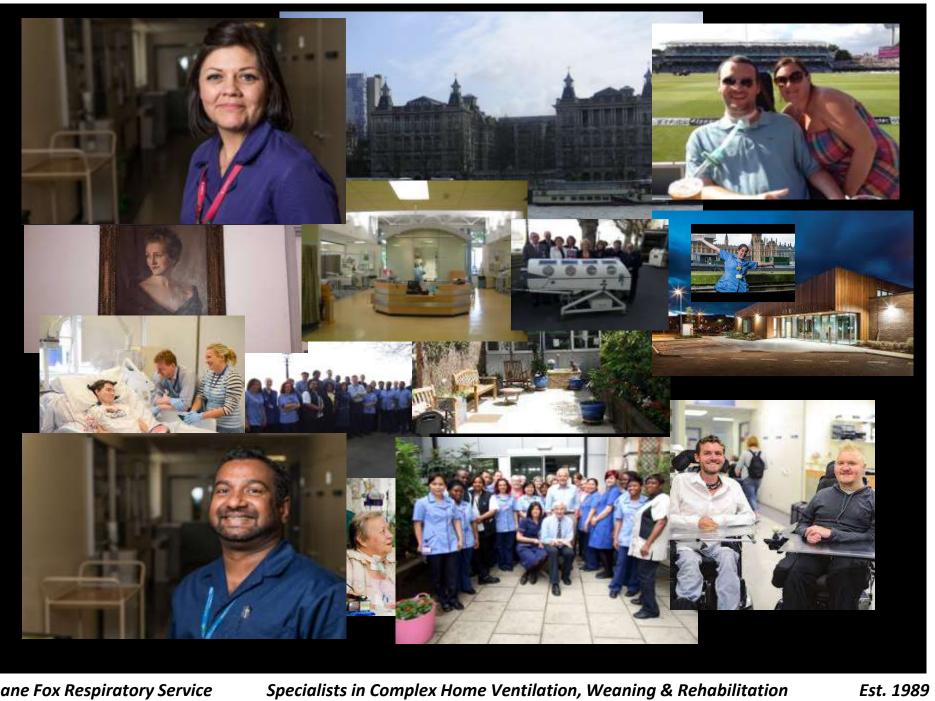
*Principal Investigators* Dr Bronwen Connolly, Dr Patrick Murphy, Dr Joerg Steier, Dr Eui-Sik Suh, Dr Michelle Ramsay, Dr Maxine Patout, Dr Phil Marino, Professor Louise Rose & Professor Nicholas Hart

Clinical Research Fellows Dr Rebecca D'Cruz, Dr Neeraj Shah

Clinical Trials Co-ordinator Miss Gill Arbane

#### London Respiratory Muscle Group

Professor Michael Polkey, Dr Bronwen Connolly, Professor Nicholas Hart, Dr Nicholas Hopkinson, Dr William Mann, Dr Vicky McBean, Dr Patrick Murphy, Dr Joerg Steier and Professor John Moxham


#### **Centre for Human and Applied Physiological Science**

Professor Steve Harridge, Dr Caroline Jolley, Dr Gerrard Rafferty

**British Lung Foundation CanHELP Charity Glaxo SmithKline Guy's & St Thomas' Charitable Foundation European Intensive Care Society European Respiratory Society** Fisher-Paykel (unrestricted grant) Medical Research Council National Institute of Health Research **NHS Innovations London Peel Medical Charity** Philips-Respironics (unrestricted grants) Philips (unrestricted grants) **Resmed Charitable Foundation Resmed (unrestricted grants)** 

#### e-mail: nicholas.hart@gstt.nhs.uk





Lane Fox Respiratory Service Specialists in Complex Home Ventilation, Weaning & Rehabilitation