Biomarkers for Asthma: Myths & Reality

Zuzana Diamant, MD PhD
pulmonologist – clinical pharmacologist

Skane University, Lund, Sweden
UMCG & QPS-NL, Groningen, The Netherlands

Hellenic Thoracic Society
Volos, 20-22 May 2016
Zuzana Diamant MD PhD Professor
Executive Medical Director Respiratory & Allergy QPS-NL
- 2014 GCP-Certified Principle Investigator, Amsterdam, NL
- 2002, 2012 Board-certified Pulmonologist, Rotterdam, NL
- 2006, 2011 Clinical Pharmacologist, Leiden, NL

Academic Affiliations
- Guest Professor Respiratory Allergy Research: Skane University, Dept Respiratory Medicine & Allergology, Lund, Sweden;
- Affiliated Scientist and Supervisor, Dept of Pharmacy & Clinical Pharmacology, University Medical Center, Groningen, Netherlands.

Research experience & Scientific Performance
- >25 year clinical trials; focus: asthma/allergy/(COPD)
- >10 years Research Director Respiratory Allergy (CRO); PI
- Phase 0-II (human disease models, non-invasive biomarkers)
- EAACI Asthma Section Secretary
- EAACI TF chair (Biomarkers) and member of 3 other EAACI TFs
- ERS TF member (Bronchoprovocation tests);
- Editorial board member (3 international journals)
- Several scientific advisory boards
- >100 scientific publications
- Scientific lectures, refereeships, chairs at international congresses
Disclosures

• Collaboration with QPS-NL (CRO), work with different pharma companies
• None related to this lecture
Lecture Highlights

• Unidimensional Paradigms vs Complex Reality
• Biomarkers & Asthma Phenotypes/Endotypes
• Application of Biomarkers in Clinical Drug Development and Personalized Medicine
Shifting Paradigm of Asthma: From one Clinical Syndrome to different Inflammatory Phenotypes
Evolution of Asthma Paradigm: From pattern recognition to understanding

Clinical phenotypes
Clinical and physiological characteristics

Bio-clinical phenotypes
Includes cellular biomarkers

Endotypes
Linking to molecular pathways
Until 1980s: Generalistic Concept of asthma = Clinical Syndrome

Traditional Pillars in...

Asthma Diagnosis, Treatment and Clinical Trials:

- Symptoms
- Rescue Medication Use
- Lung Function Measurements
- Exacerbations

GINA www.ginasthma.org
Classical Concept in 1990s-early 2000s: Asthma = Allergen-driven TH2 Disease

Genes predisposing to allergies

Lack of early Th1 stimulation

Triggers:
- Allergens, viruses, cold, irritants, exercise

Hyperactive response
- Bronchospasm
- Edema
- Airway obstruction

Physiologic Effects

Chronic inflammation & Tissue remodeling

Allergen-induced TH2-response as Asthma POC model in Drug Development

Increased Sputum Eosinophils at 24 and 7 h post-Allergen Challenge following P and FP treatment

<table>
<thead>
<tr>
<th>Sputum Biomarker</th>
<th>Treatment</th>
<th>Estimate (90% CI)</th>
<th>Change from Baseline (90% CI)</th>
<th>1-sided p-value</th>
<th>Effect Size*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluticasone - Placebo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hour 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils</td>
<td>Placebo</td>
<td>250.8 (165.5, 336.1)</td>
<td>-277 (-394, -160)</td>
<td>0.002</td>
<td>-2.1</td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>-25.9 (-106, 54.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils</td>
<td>Placebo</td>
<td>11.5 (5.7, 17.4)</td>
<td>-11.8 (-19.9, -3.8)</td>
<td>0.014</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>-0.3 (-5.8, 5.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Placebo</td>
<td>173.6 (62.5, 284.8)</td>
<td>-101 (-253, 52.0)</td>
<td>0.124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>73.0 (-31.7, 177.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Placebo</td>
<td>-5.5 (-18.8, 7.9)</td>
<td>6.3 (-9.3, 21.8)</td>
<td>0.768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>0.8 (-11.9, 13.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hour 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils</td>
<td>Placebo</td>
<td>250.8 (165.5, 336.1)</td>
<td>-277 (-394, -160)</td>
<td>0.002</td>
<td>-2.1</td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>-25.9 (-106, 54.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils</td>
<td>Placebo</td>
<td>11.5 (5.7, 17.4)</td>
<td>-11.8 (-19.9, -3.8)</td>
<td>0.014</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>-0.3 (-5.8, 5.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Placebo</td>
<td>173.6 (62.5, 284.8)</td>
<td>-101 (-253, 52.0)</td>
<td>0.124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>73.0 (-31.7, 177.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Placebo</td>
<td>-5.5 (-18.8, 7.9)</td>
<td>6.3 (-9.3, 21.8)</td>
<td>0.768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluticasone (500 mcg bid)</td>
<td>0.8 (-11.9, 13.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Effect size for Fluticasone shown on analysis scale for markers with statistically significant treatment effects (1-sided alpha < 0.05)

Cell count estimates were analyzed after a square root transformation

CI = Confidence Interval, Final Results Date: 08/28/2009

Life was simple:

1990s-early 2000s:
Uni-dimensional Concept of Asthma & Asthma Management:

- Mainly allergic
- Th2-driven (major cytokines: IL-4, IL-5 and IL-13)
- Eosinophilic
- ICS-responsive condition
One-Size-fits-All Treatment of Asthma according to Guidelines based on Disease severity

Step 1
Intermitterend astma

Step 2
Licht persisterend astma

Symptomen ≤ 1x per week

β₂-kort
ICS 400-800 µg bud/becl; 200-500 µg flu

Niet bereiken streefdoel ondanks stap 3 medicatie

Step 3
Matig persisterend astma

Symptomen > 1x per week

β₂-kort
ICS 1600 µg bud/becl; 1000 µg flu

ICS 1600 µg bud/becl; 1000 µg flu

Niet bereiken streefdoel ondanks 3 maanden matige dosis ICS

Step 4
Ernstig persisterend astma

β₂-kort
ICS 1600 µg bud/becl; 1000 µg flu

ipratropium of theoph en β₂-lang

ICS 800 µg bud/becl; 500 µg flu en β₂-lang

ICS 1600 µg bud/becl; 1000 µg flu en β₂-lang

Controle
Step omlaag

Stepdown:
Indien astma na 3 maanden onder controle, dan stap omlaag overwegen

Niet bereiken streefdoel ondanks stap 3 medicatie

Niet bereiken streefdoel ondanks 3 maanden matige dosis ICS

Symptomen ≤ 1x per week
Despite almost complete, prolonged depletion of eosinophils from sputum and blood
No effect on allergen-induced late response or AHR
Study results question the role of eosinophils in LAR/asthma
Effect of two anti-IL13 mAbs on Allergen Challenge

- Pts inclusion based on clinical/physiological criteria
- Both anti-IL13 mABs inhibit the LAR (+/- EAR)
- No effect on allergen-induced AHR
- No effect on allergen-induced sputum eosinophils
- No effect on allergen-induced blood eos
• Polosa R (Curr Opin Pulm Med 2007):
 ‘Monotherapy with LTRA in asthma is not effective except for specific populations e.g. aspirin-intolerant asthma and asthma with concomitant allergic rhinitis’.

• Chauhan & Ducharme: (Cochrane report 2012):
 ‘As monotherapy, inhaled corticosteroids display superior efficacy to anti-leukotrienes in adults and children with persistent asthma; the superiority is particularly marked in patients with moderate airway obstruction.’
Is Life (so) simple?

• Still too many asthmatics, especially those with severe asthma, are suboptimally controlled despite potent ICS + LABA combi therapy
 • [Rabe KF, et al ERJ 2000;16:802-7].

• Several biologicals development programs have been suspended due to discordant results and hence negative POC in allergen challenge model
Conclusion: Asthma is more Heterogeneous than originally thought; time for a Rethink?
1990-early 2000
New Dimension: Airway Sampling

Invasive
- Bronchial biopsy
- Bronchial wash
- Bronchial brushing
- Bronchoalveolar lavage (BAL)
- Lung biopsy

Non-invasive
- Exhaled air analysis
- (EBC, FeNO, eNose)

Sputum analysis
Two different pathways (TH2 and ILC2) produce type2-cytokines and result in eosinophilia.
From pattern recognition to understanding asthma

Clinical and physiological characteristics

Clinical phenotypes

Bio-clinical phenotypes
Includes cellular and other inflammatory biomarkers

Endotypes
Linking to molecular pathways
Characteristics of an “ideal” Biomarker

- Involved in the disease’s pathophysiology
- Responsive to changes in disease activity and...
- Responsive to (targeted) treatment
- Simple
- Minimally invasive
- Properly validated
- Repeatable
- Cost-effective

Th2-phenotype-linked Biomarkers: for phenotyping and monitoring

- Sputum eosinophils (>2 or 3%)
- Exhaled nitric oxide (FeNO; >30 ppb)
- Blood eosinophils (150-400/mcL)
- Periostin
- IgE
- Allergen skin prick testing
Blood eosinophils: back on stage

Diagnostic accuracy to discriminate between eosinophilic vs non-eosinophilic airway inflammation*) was assessed by ROC AUC for:
- Blood eosinophils: 89%
- FeNO: 78%
- Serum periostin (inhouse periostin assay): 55% (NS)

*) defined by sputum eosinophilia (≥3 and 2%)

Cluster Analysis and Clinical Asthma Phenotypes

Pranab Haldar*, Ian D. Pavord*, Dominic E. Shaw, Michael A. Berry, Michael Thomas, Christopher E. Brightling, Andrew J. Wardlaw, and Ruth H. Green*

1Institute for Lung Health, Glenfield Hospital, Leicester, United Kingdom; and 2Department of General Practice, University of Aberdeen, Aberdeen, United Kingdom

Discordant Symptoms

- **Early Symptom Predominant**
 - Early onset, atopic
 - Normal BMI
 - High symptom expression

- **Obese Non-Eosinophilic**
 - Later onset, female preponderance
 - High symptom expression

Concordant Disease

- Symptom-based approach to therapy titration may be sufficient.

Benign Asthma

- Mixed middle-aged cohort
- Well controlled symptoms and inflammation
- Benign prognosis

Early Onset Atopic Asthma

- Concordant symptoms, inflammation & airway dysfunction

Inflammation Predominant

- Late onset, greater proportion of males
- Few daily symptoms but active eosinophilic inflammation

Monitoring inflammation allows down-titration of corticosteroids.

Eosinophilic Inflammation

Take home messages from Haldar study

• Different inflammatory phenotypes based on airway inflammation (eosinophilic vs non-eosinophilic)
 • ICS responders
 • ICS non-responders

• Different asthma phenotypes require different management strategy (concordant vs discordant disease)
 • Symptoms/lung function-driven strategy
 • Biomarkers-driven strategy

Moderate-severe Asthma profits from Biomarker guided Treatment Strategy

\[\text{Jayaram L, et al. ERJ 2006;27:483-94.} \]
Bio-Clinical Phenotypes of Asthma

Mild-mod early onset
Young
Allergic
Normal LF

Mild-mod early onset
Older
Allergic
Reversible LF

Higher BMI later onset
Older
High ICS
Reversible LF

Severe
Obese
Oldest
ICS, OCS, +
Impaired LF

Moore WC, JACI 2014; 133:1557-63.
From pattern recognition to understanding asthma

Clinical phenotypes
Clinical and physiological characteristics

Bio-clinical phenotypes
Includes cellular biomarkers

Endotypes
Linking to molecular pathways
T-helper Type 2–driven Inflammation Defines Major Subphenotypes of Asthma

Prescott G. Woodruff1,2, Barmak Modrek3, David F. Choy4, Guiquan Jia4, Alexander R. Abbas3, Almut Ellwanger1, Joseph R. Arron4*, Laura L. Koth1,5, and John V. Fahy1,2*

Objectives:
• To study the heterogeneity of Th2-related molecular mechanisms and
• The relationship on patient responsiveness to ICS

Methods:
* Investigating the gene expression in epithelial brushings from 42 patients with mild-moderate asthma and 28 non-asthmatics controls

Molecular markers identify Th2-type asthma

C/3 gene expression signature correlates with:
- Th2 profile: IL5 and IL13 expression, eosinophilia
- BHR, airway remodeling

Woodruff P, et al AJRCCM 2009
Only asthmatics with “Th2 High” profile responded to anti-inflammatory therapy with ICS

After 8 weeks of FP 2x500 mcg BID, increased FEV1 was found only in TH2-high asthmatics

Non-Th2/Th2 low asthma:
- approx. 50% of asthmatics
- Associated with infections, occupational irritants, oxidative stress, neutrophils, TH1-17, ASM changes
- Modest or no response to ICS and/or targeted TH2-therapeutics
- Still insufficiently defined in contrast to Th2high asthma
IMI project U-Biopred: from Systems Biology to Handprints of Severe Asthma

Kaminsky, Irvin, Sterk, JAP 2011.
Asthma is a heterogeneous disease consisting of $\geq 4(-5)$ clinical phenotype clusters. Within the clinical phenotypes there are different inflammatory phenotypes. Neutrophilic inflammatory phenotypes present in more severe disease. Th2’-high’ asthma is presently the only ‘well-defined’ endotype characterized by increased levels of type2-inflammation; usually well-responsive to ICS. Well-defined biomarkers for type2-inflammation include FeNO, eosinophils, periostin, IgE. ‘Th2-low/non-Th2’ asthma does not respond to ICS and represents an unmet need.
New Era: Applying Biomarkers for Personalized Medicine (& Drug Development)

YESTERDAY

Traditional Medicine

One size fits all treatment

TODAY

Stratified Medicine

Relatively homogeneous patient groups (biomarkers, phenotypes)

TOMORROW

Personalized Medicine

Single individuals with a disease or risk of a disease (treatment/prevention)

Revival of Biomarker-guided Therapy (since 1958)

Dr Harry Morrow Brown 1917-2013

Application and Impact of Type2-biomarkers for Targeted Monoclonal Antibody Therapy in Type2-eosinophilic asthma
Inclusion criteria:
• Uncontrolled (symptomatic) asthma with persistent sputum eosinophilia (>3%) while on oral prednisone (5-25 mg/day) and high-dosed ICS

Effect on Exacerbations:
• In placebo group: 10 (of 11) pts had 12 exa’s; all received extra prednisone or antibiotics;
• in Mepo group only 1 pt experienced an exa
Mepolizumab (anti-IL5) reduces exacerbations in patients with severe eosinophilic asthma (DREAM study: >600 pts)

>600 pts
Eosinophil asthma (sputum eosinophils; blood eos or FeNO) on high doses of ICS +/- OCS
N=135 randomized; pts with eosinophilic SA; (Blood eos >300 cells/mL (prev) or >150 mL (optim phase); OCS + high dosed ICS

32% exacerbations

Phase II
N=219 poorly controlled asthma (ICS mean dose: 580 mcg/day); Lebrikizumab 250 mg sc/month during 6 months

Lebrikizumab (anti-IL13) effective in Th2-high vs Th2-low moderate-severe asthma on top of high doses ICS.

Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics

Z. Diamant¹, P. N. Sidharta², D. Singh³, B. J. O’Connor⁴, R. Zuiker¹, B. R. Leaker⁴, M. Silkey² and J. Dingemanse²

N=15 HDM allergic asthmatics; no pre-phenotyping

25.6% LAR (AUC3-10h)
No effect on FeNO or blood eosinophils
Exit for CRTH2 antagonists?

- Overall modest efficacy data from 2 POCs (Singh D, ERJ 2013; Diamant, CEA 2014) and
- Little/no efficacy in clinical asthma studies (non-phenotyped asthmatics)
- Caused the development of several CRTH2-antagonists to be put on hold
Phenotyping saves CRTH2 clinical program

CRTH2 antagonist OC000459 effective in eosinophilic, but not in non-eosinophilic asthma.

A: effect of CRTH2-inhibition vs P in ‘eosinophilic’ asthmatics
(≥250 blood eosinophils/mcL)

B: effect of CRTH2-inhibition vs P in ‘non-eosinophilic’ asthmatics
(<250 blood eosinophils/mcL)

Emerging and Current Targeted type 2-treatments for Severe Asthma

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target</th>
<th>Biomarker</th>
<th>Development Phase (EU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mepolizumab¹</td>
<td>IL-5</td>
<td>Blood eosinophilia</td>
<td>Recommended for approval</td>
</tr>
<tr>
<td>Reslizumab²</td>
<td>IL-5</td>
<td>Blood eosinophilia</td>
<td>Pre-registration (Filed)</td>
</tr>
<tr>
<td>Benralizumab³</td>
<td>IL-5Rα</td>
<td>Blood eosinophilia</td>
<td>3</td>
</tr>
<tr>
<td>Lebrikizumab⁴</td>
<td>IL-13</td>
<td>Periostin</td>
<td>3</td>
</tr>
<tr>
<td>Tralokinumab⁵</td>
<td>IL-13</td>
<td>FeNO (?)</td>
<td>3</td>
</tr>
<tr>
<td>Dupilumab⁶</td>
<td>IL-13, IL-4</td>
<td>FeNO (?)</td>
<td>2</td>
</tr>
<tr>
<td>QAW039⁷,⁸</td>
<td>CRTH2</td>
<td>Blood eosinophilia (?)</td>
<td>3</td>
</tr>
<tr>
<td>Omalizumab⁸</td>
<td>IgE</td>
<td>FeNO</td>
<td>Approved</td>
</tr>
</tbody>
</table>

¹ As of December 2015.
² Orally active.
Summing up

• Q: Do we need biomarkers in asthma management?
• A: Yes, in selected phenotypes

• Q: De we *always* need biomarkers to manage asthma?
• A: Probably not, only in non-responsive patients
Proposed Algorithm for Clinical Application of Biomarkers in Asthma

For a patient who is uncontrolled on high dose ICS or oral CS

Make sure the patient has good
- Compliance
- Inhalation technique
- Knowledge of his or her condition

Check
- IgE
- Eosinophils
- FeNO
- Periostin

If high levels, start relevant anticytokine antibody treatment (as available in your country)
Back up
Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program

5 different subphenotypes within the SA phenotype with clinically similar characteristics

Moore WC, AJRCCM 2010; 181:315-23.
Biomarkers, Cluster analysis

Current Concept of Asthma based on recent Insights

omics techniques

personalized medicine

Response (stimuli, targeted Rx)

Genes

Environmental factors, triggers

Biomarkers, Cluster analysis
Effects of an Anti-TSLP Antibody on Allergen-Induced Asthmatic Responses

N=31 mild asthmatics
3 monthly IV doses of anti-TSLP mAb or P

34% inhibition of the LAR (day 42) and 46% inhibition of the LAR on day 84.

Also inhibition of sputum & blood eosinophils and FeNO.

Biomarkers \Rightarrow Phenotypes \Rightarrow Personalized Medicine

Clinical phenotypes
Clinical and physiological characteristics

Bio-clinical phenotypes
Includes cellular and molecular biomarkers

Endotypes
Linking to molecular pathways

YESTERDAY
Traditional Medicine
One size fits all treatment

TODAY
Stratified Medicine
Relatively homogeneous patient groups (biomarkers, phenotypes)

TOMORROW
Personalized Medicine
Single individuals with a disease or risk of a disease (treatment/prevention)