

Υπάρχουσες και αναδυόμενες

θεραπείες σ

Ζωή Δανιήλ Καθηγήτρια Πνευμονολογίας Πανεπιστήμιο Θεσσαλίας

The birth of IPF - 2001

American Thoracic Society

American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias

THIS JOINT STATEMENT OF THE AMERICAN THORACIC SOCIETY (ATS), AND THE EUROPEAN RESPIRATORY SOCIETY (ERS) WAS ADOPTED BY THE ATS BOARD OF DIRECTORS, JUNE 2001 AND BY THE ERS EXECUTIVE COMMITTEE, JUNE 2001

Importance of IPF

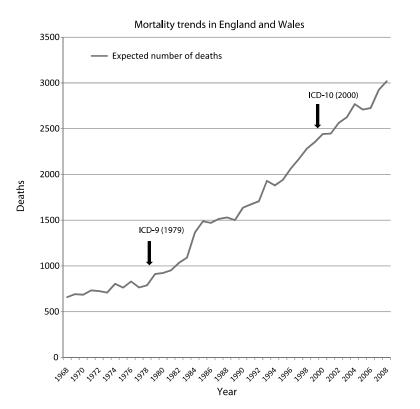


Figure 1 Estimated number of deaths from idiopathic pulmonary fibrosis clinical syndrome, age standardised to the 2008 population of England and Wales. ICD, International Classification of Diseases.

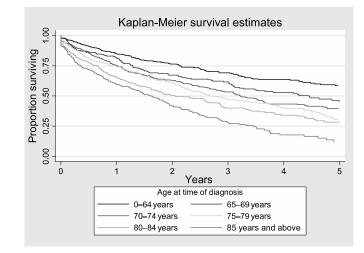
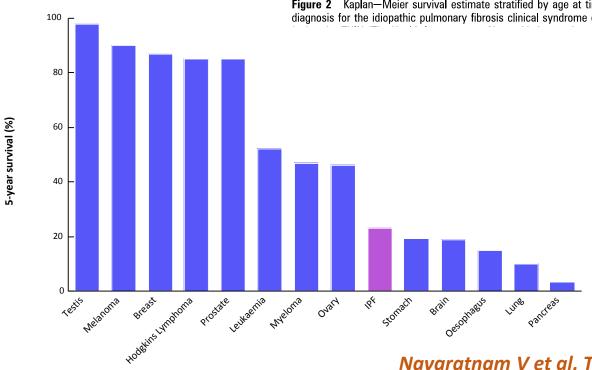
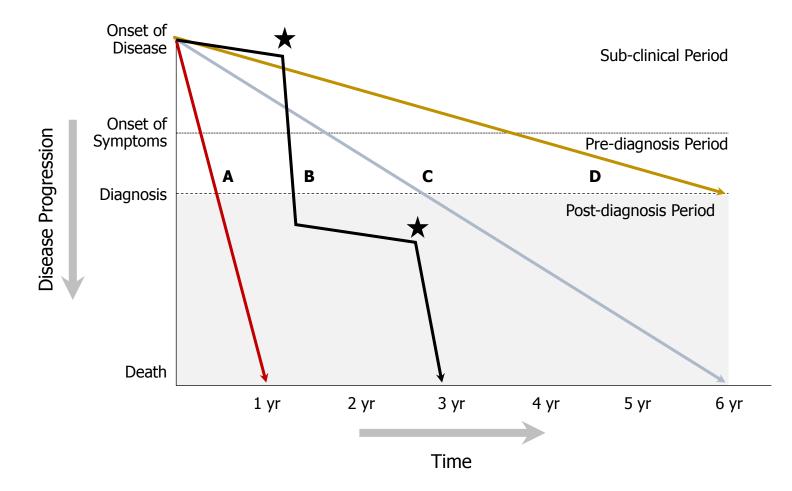
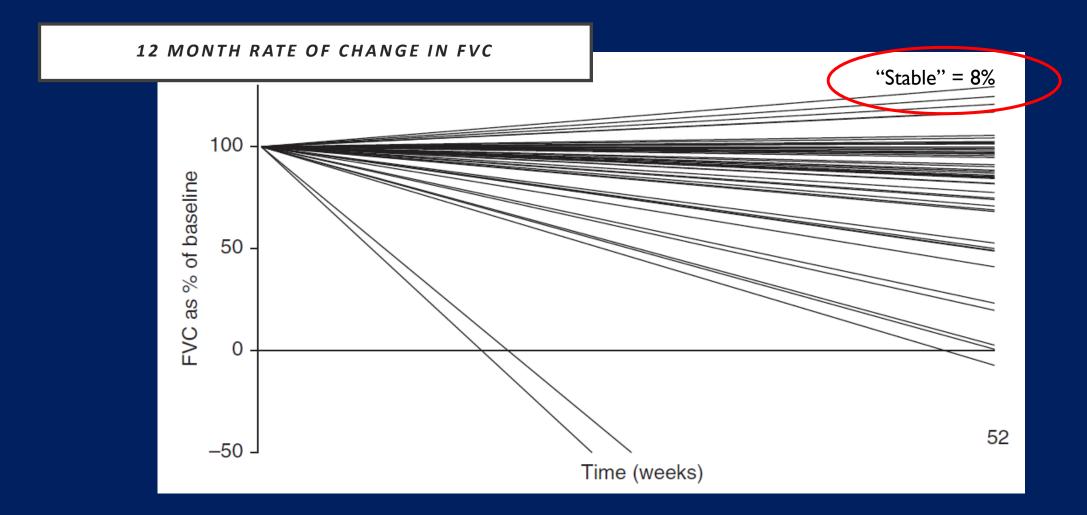




Figure 2 Kaplan-Meier survival estimate stratified by age at time of diagnosis for the idiopathic pulmonary fibrosis clinical syndrome cohort

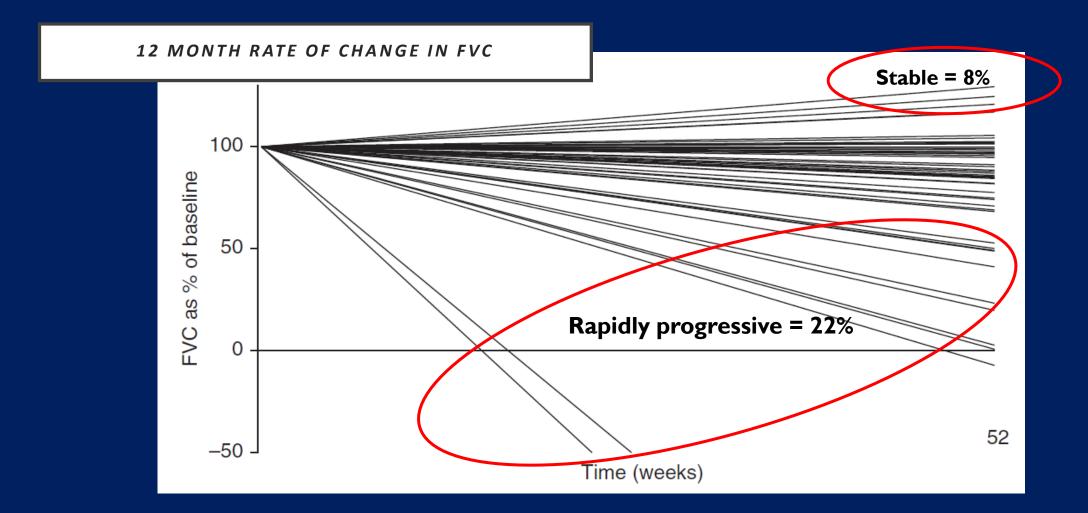


Navaratnam V et al, Thorax 2011

IPF disease progression



DAY BY DAY DISEASE PROGRESSION


Russell AM. et al. Am J Respir Crit Care Med 2016

DAY BY DAY DISEASE PROGRESSION

Russell AM. et al. Am J Respir Crit Care Med 2016

DAY BY DAY DISEASE PROGRESSION

Russell AM. et al. Am J Respir Crit Care Med 2016

Gazing into the crystal ball: can treatment response be predicted in IPF?

There is still a major unmet need for *biomarkers* to identify

- individuals who are most likely to benefit from treatment (predictive biomarkers) and
- for measuring an individual's treatment response (pharmacodynamic biomarkers)

Michael Kreuter, Toby Maher

Lancet Respir Med 2018

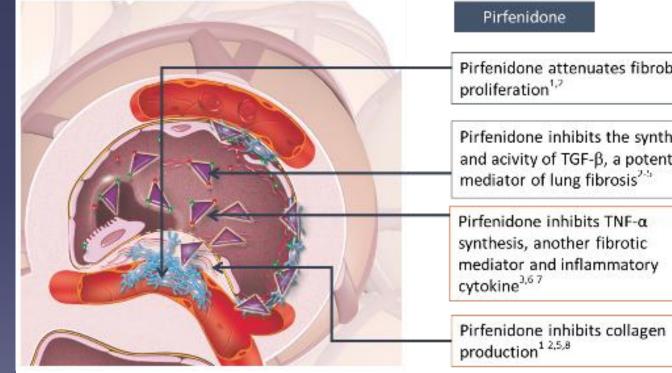
IPF - Treatment

The birth of IPF - 2001

American Thoracic Society

American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias

THIS JOINT STATEMENT OF THE AMERICAN THORACIC SOCIETY (ATS), AND THE EUROPEAN RESPIRATORY SOCIETY (ERS) WAS ADOPTED BY THE ATS BOARD OF DIRECTORS, JUNE 2001 AND BY THE ERS EXECUTIVE COMMITTEE, JUNE 2001


May 2014

ORIGINAL ARTICLES

Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis L. Richeldi and Others Free Full Text | • CME

A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis T.E. King, Jr., and Others Free Full Text

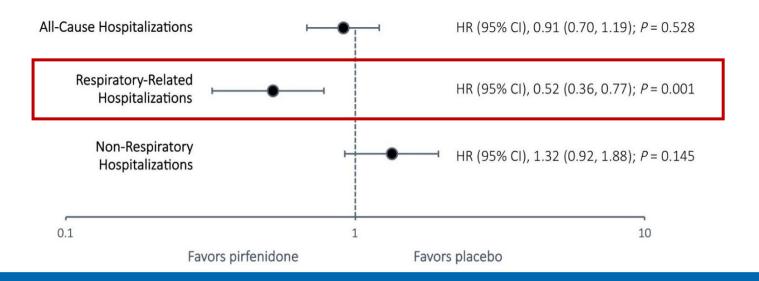
Pirfenidone


Data from animal and in vitro studies

Pirfenidone attenuates fibroblast

Pirfenidone inhibits the synthesis and acivity of TGF- β , a potent mediator of lung fibrosis2-5

synthesis, another fibrotic mediator and inflammatory


Summary of key clinical endpoints in pooled analyses of pirfenidone Phase III trials at 1 year

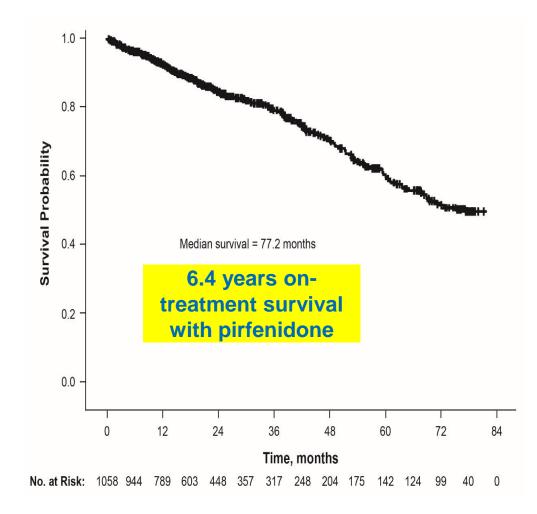
CI, confidence interval; FVC, forced vital capacity; HR, hazard ratio

Clinical outcomes – respiratory hospitalizations

HR (95% CI) of Hospitalizations—Pirfenidone vs. Placebo

Pirfenidone may reduce the risk of non-elective respiratory-related hospitalizations by 48% over 12 months

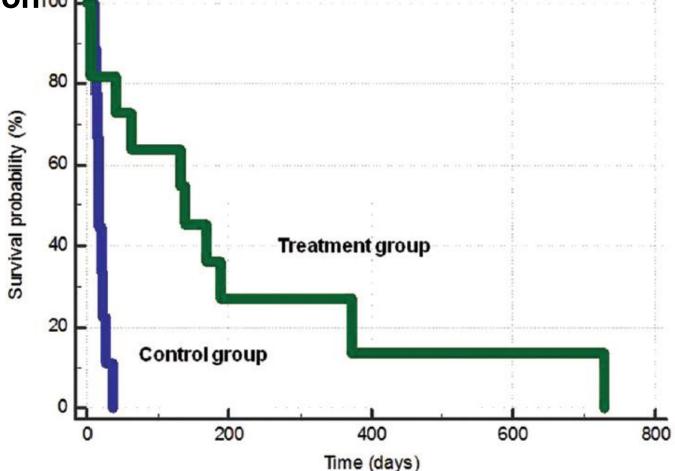
Ley B, et al. Am J Resp Crit Care Med, 2017


Clinical outcomes – death after hospitalizations

Pirfenidone may reduce the risk of death after all-cause hospitalization by 44% over 12 months

	Hazard ratio	95% CI	<i>P</i> -value			
All-cause hospitalization (n=221*)						
Unadjusted	0.49	0.28–0.86	0.013			
Adjusted for propensity score [†]	0.56	0.32–0.99	0.047			
Respiratory hospitalizations	(n=115*)					
Unadjusted	0.55	0.28–1.08	0.082			
Adjusted for propensity score [†]	0.50	0.25–1.03	0.061			
Non-respiratory hospitalization	ons (n=124*)					
Unadjusted	0.67	0.26–1.74	0.412			
Adjusted for propensity score [†]	0.73	0.27-1.97	0.537			

Ley B, et al. Am J Resp Crit Care Med, 2017


Clinical outcomes – additional mortality data

The median ontreatment survival from the first dose of 2403 mg/day pirfenidone* in the RECAP study was 77.2 months

Pirfenidone improves the survival of patients with idiopathic pulmonary fibrosis hospitalized for acute exacerbation¹⁰⁰

- The survival rate of the patients in the treatment group was 70.0% (±10.2%) at 15 days, 45.0% (±11.1%) at 30 days, 35.0% (±10.7%) at 60 days and 7.5% (±6.6%) at 370 days (maximum length of the follow-up period).
- The stratified log rank test showed that the patients in the treatment group survived for a significantly longer time than those in the control group (median survival time: 137.0 [95% CI, 39.0–373.0] versus 16.0 [95% CI, 14.0– 22.0] days; p=.0009)

Kaplan-Meier estimates of survival function after RICU admission, stratified according to the group of origin.

Pirfenidone in patients with idiopathic pulmonary fibrosis and more advanced lung function impairment

Steven D. Nathan^{a,*}, Ulrich Costabel^b, Carlo Albera^{c,1}, Jürgen Behr^d, Wim A. Wuyts^e, Klaus-Uwe Kirchgaessler^f, John L. Stauffer^g, Elizabeth Morgenthien^g, Willis Chou^{g,2}, Susan L. Limb^g, Paul W. Noble^h

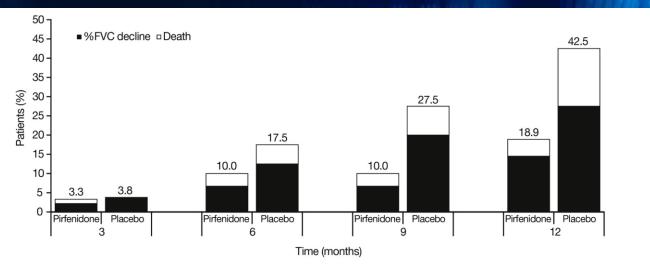


Fig. 2. Percentage of patients with more advanced lung function impairment who experienced \geq 10% absolute %FVC decline or all-cause mortality over time. %FVC, percent predicted forced vital capacity.

Respiratory Medicine 153 (2019) 44–51

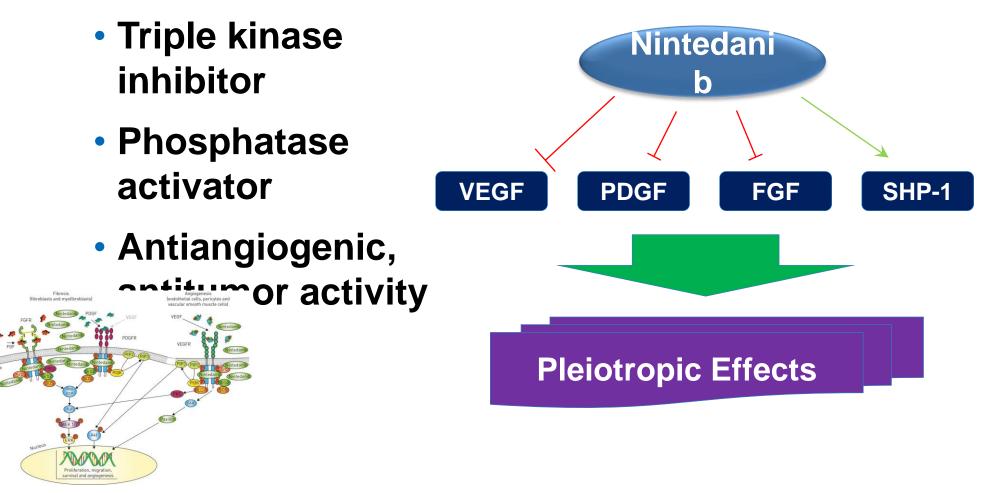
IPF and more advanced lung function impairment, defined as percent predicted forced vital capacity (%FVC) < 50% and/or percent predicted carbon monoxide diffusing capacity < 35%.

Table 2

Time-to-event analyses and NNT calculations for pirfenidone versus placebo for all-cause mortality and composite outcomes over 52 weeks in patients with more advanced lung function impairment who received pirfenidone 2,403 mg/day or placebo in ASCEND and CAPACITY.

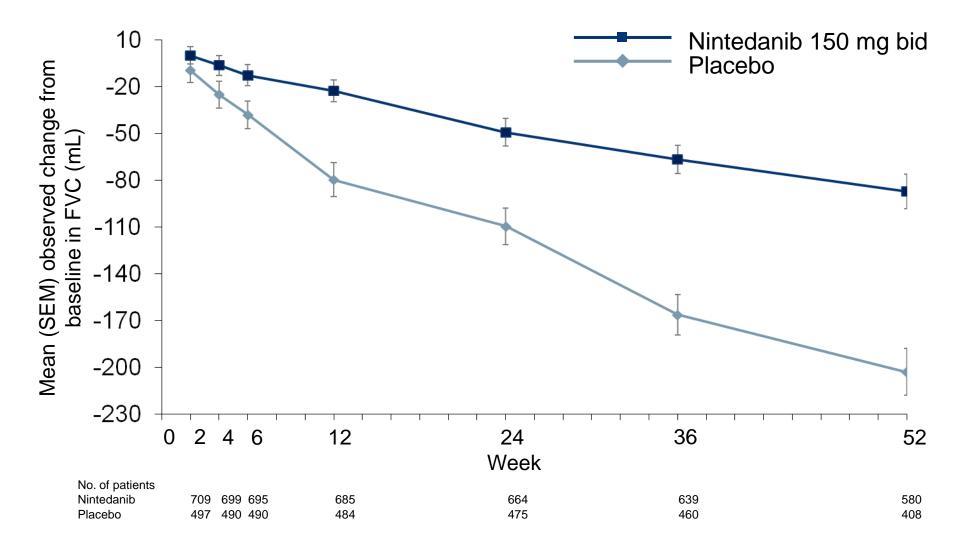
Outcome, <i>n</i> (%)	Patients with more advanced lung function impairment ^a N = 170			
	Pirfenidone $n = 90$	Placebo $n = 80$	HR (95% CI)	NNT
All-cause mortality	4 (4.4)	12 (15.0)	$0.28 (0.09-0.8) p = 0.0180^{b}$	10
\geq 10% absolute %FVC decline or all-cause mortality	19 (21.1)	35 (43.8)	$0.40 (0.23-0.6) p = 0.0006^{b}$	5
Respiratory hospitalisation or all-cause mortality	12 (13.3)	22 (27.5)	$0.45 (0.22-0.9) p = 0.0219^{b}$	8
$\geq\!10\%$ absolute %FVC decline or respiratory hospitalisation or all-cause mortality	25 (27.8)	40 (50.0)	0.46 (0.28–0.7) $p = 0.0018^{b}$	5

CI, confidence interval; %DLco, percent predicted carbon monoxide diffusing capacity; %FVC, percent predicted forced vital capacity; HR, hazard ratio; NNT, number-needed-to-treat.

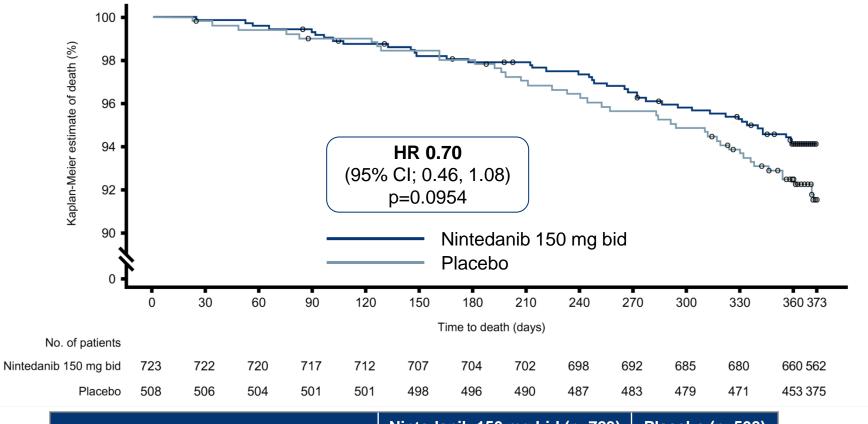

^a %FVC < 50% and/or %DLco < 35%.

^b *P*-value is from a log-rank test stratified by study.

But tolerability needs to be managed... ASCEND trial

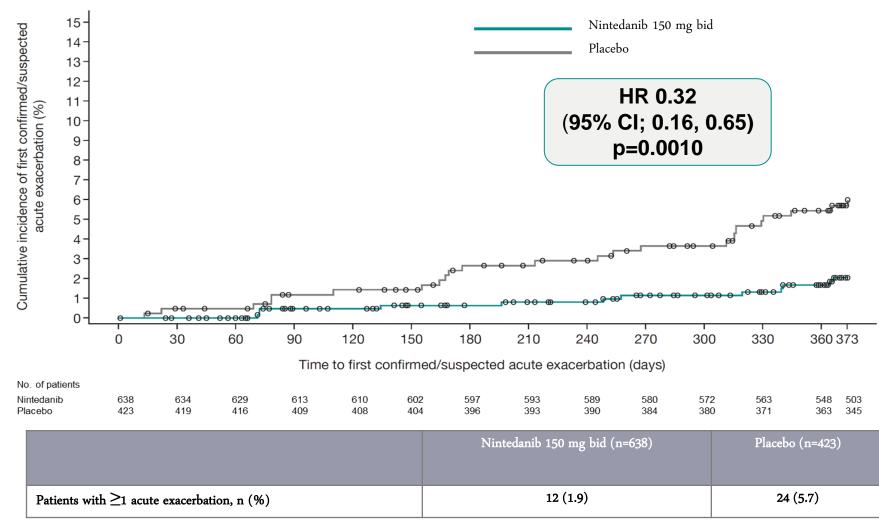

Dationto (0/)	Pirfenidone	Placebo
Patients (%)	(N=278)	(N=277)
Cough	25.2	29.6
Nausea	36.0	13.4
Diarrhea	22.3	21.7
Upper respiratory tract infection	21.9	20.2
Fatigue	20.9	17.3
Rash	28.1	8.7
Dyspnea	14.7	17.7
Idiopathic pulmonary fibrosis	9.4	18.1
Bronchitis	14.0	13.0
Dyspepsia	17.6	6.1
Nasopharyngitis	11.9	10.8
Anorexia	15.8	6.5
Vomiting	12.9	8.7
Weight decreased	12.6	7.9
Gastroesophageal flux	11.9	6.5
Insomnia	11.2	6.5

Mechanisms of Nintedanib Action


Hilberg F, et al. Cancer Res. 2008 Tai WT, et al. J Hepatol. 2014

Changes in FVC over time in the TOMORROW and INPULSIS[®] trials

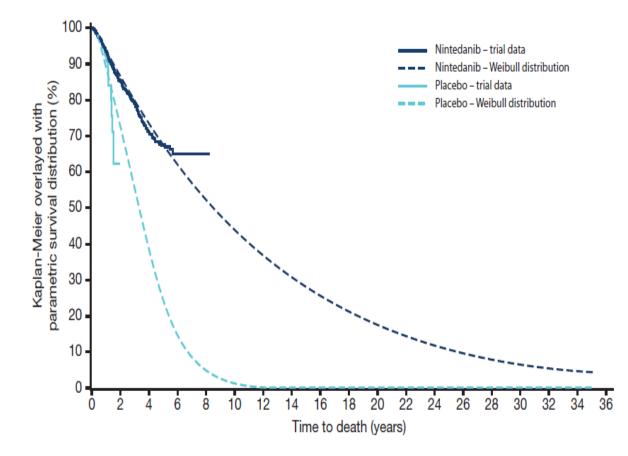
Richeldi L et. al. Respiratory Medicine (2016)


All-cause mortality over 52 weeks: Pooled data from TOMORROW and INPULSIS®

	Nintedanib 150 mg bid (n=723)	Placebo (n=508)
Patients who died, n (%)	42 (5.8)	42 (8.3)

Richeldi L et. al. Respiratory Medicine (2016)

TIME TO FIRST CONFIRMED OR SUSPECTED ACUTE EXACERBATION PER ADJUDICATION

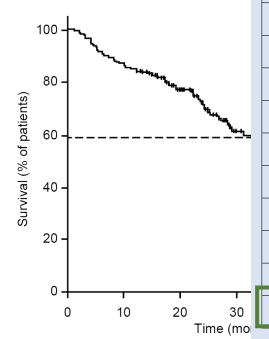


Richeldi L, et al. N Engl J Med. 2014

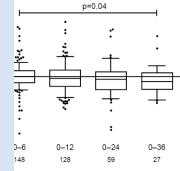
Adverse events

	INPULSIS-1		INPUL	SIS-2
No of patients (%)	Nintedanib 150 mg bid (n=309)	Placebo (n=204)	Nintedanib 150 mg bid (n=329)	Placebo (n=219)
Diarrhea	190 (61.5)	38 (18.6)	208 (63.2)	40 (18.3)
Nausea	70 (22.7)	12 (5.9)	86 (26.1)	16 (7.3)
Nasopharyngitis	39 (12.6)	34 (16.7)	48 (14.6)	34 (15.5)
Cough	47 (15.2)	26 (12.7)	38 (11.6)	31 (14.2)
Progression of IPF [†]	31 (10.0)	21 (10.3)	33 (10.0)	40 (18.3)
Bronchitis	36 (11.7)	28 (13.7)	31 (9.4)	17 (7.8)
Upper respiratory tract infection	28 (9.1)	18 (8.8)	30 (9.1)	24 (11.0)
Dyspnea	22 (7.1)	23 (11.3)	27 (8.2)	25 (11.4)
Decreased appetite	26 (8.4)	14 (6.9)	42 (12.8)	10 (4.6)
Vomiting	40 (12.9)	4 (2.0)	34 (10.3)	7 (3.2)
Weight decreased	25 (8.1)	13 (6.4)	37 (11.2)	2 (0.9)

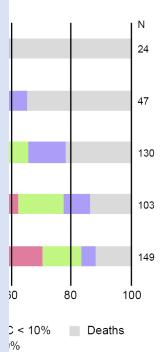
Survival outcomes with long term nintedanib


 Mean (95% CI) survival was estimated as 11.6 (9.6, 14.1) years in nintedanib-treated patients and 3.7 (2.5, 5.4) years in placebo-treated patients; median survival was estimated as 8.5 years in nintedanib-treated patients and 3.3 years in placebo-treated patients

Am J Respir Crit Care Med 2018

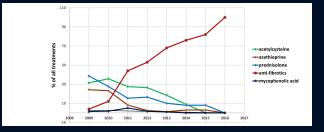

Efficacy and safety of nintedanib in a Greek multicen fibrosis registry: a retrospective, observational, cohor

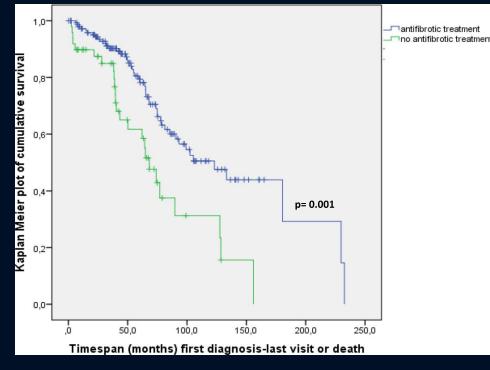
Katerina Antoniou^{1*}, Katerina Markopoulou^{2*}, Argyrios T: Eirini Vasarmidi^{1*}, Jiannis Organtzis^{4*}, Vasilios Tzilas³, Eva Christina Rampiadou², Serafeim-Chrysovalantis Kotoulas Evangelia Fouka⁴, Georgios Meletis⁶, Stavros Tryfon², Zo Demosthenes Bouros³.



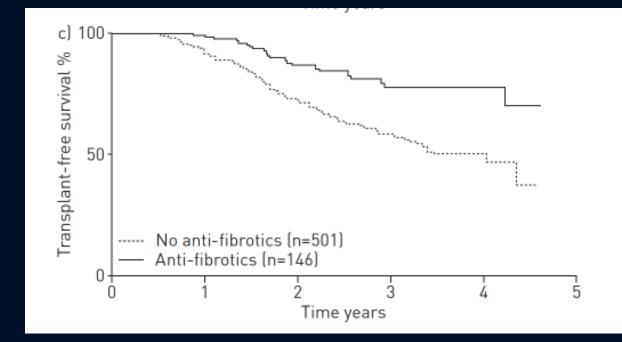
	Number of AEs	Proportion of patients with AE		
Total AEs reported	224	55.7%		
GI events	173	-		
Diarrhoea	110	45.0%		
Nausea/vomiting	26	10.7%		
Anorexia	18	7.4%		
Abdominal pain	11	4.5%		
Dyspepsia/bloating	6	2.5%		
GI bleeding	2	0.8%		
Reduced body weight	16	6.6%		
Liver function test elevations	12 6	4.9%		
Weakness	11	4.5%		
Ischaemic events ^a	9	2.9%		
Hyperpyrexia	1	0.4%		
Others	4	1.6%		
Reduced dose due to AE	69	28.3%		
Discontinuation due to AE 32 13.1%				

Table 2. Investigator-reported AEs in the safety population (n=244).




d 24–36 months. B: Change from baseline red from the analysis after death and/or capacity; pred, predicted.

Abbreviations: AE, adverse event; GI, gastrointestinal.


The European IPF registry (eurIPFreg): baseline characteristics and survival of patients with idiopathic pulmonary fibrosis

Baseline characteristics of idiopathic pulmonary fibrosis: analysis from the Australian Idiopathic Pulmonary Fibrosis Registry

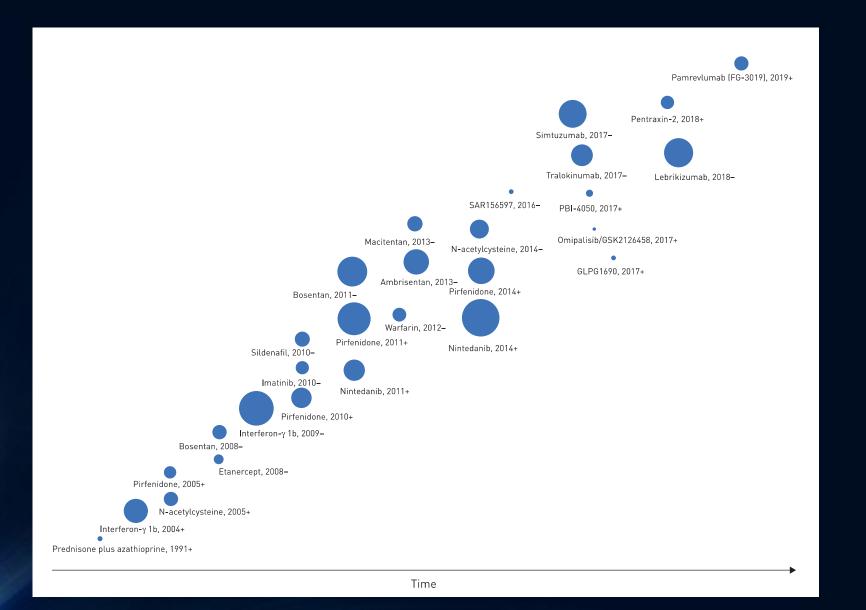
Helen E. Jo ^{1,2}, Ian Glaspole^{3,4}, Christopher Grainge⁵, Nicole Goh^{3,6}, Peter M.A. Hopkins⁷, Yuben Moodley⁸, Paul N. Reynolds⁹, Sally Chapman⁹, E. Haydn Walters¹⁰, Christopher Zappala¹¹, Heather Allan¹², Gregory J. Keir¹³, Andrew Hayen¹⁴, Wendy A. Cooper¹⁴, Annabelle M. Mahar¹⁵, Samantha Ellis¹⁵, Sacha Macansh¹² and Tamera J. Corte^{1,2}

Jo et al Eur Respir J 2016

Guenther et al. Respir Res 2018

Pirfenidone works across major patient subgroups...

Subgroup		Favours placebo	Favours pirfenidone
Region	USA Rest of world		_
Age years	<65 65–74 ≽75		
Sex	Male Female		_ _
Race/ethnicity	White Non-white		_
FVC % pred	<65 65-≼80 >80		
D∟co % pred	<40 40-<50 ≽50		
6MWD m	0–350 350–<450 ≽450		
FEV1/FVC	<0.80 0.80-<0.85 ≽0.85		
Supplemental O_2 use	Yes No		0
Smoker status	Current/former Never		_
Time since diagnosis years	<1 1–≼2 >2		
		-0.5 0	.0 0.5 1.0


Standardised treatment effect (95% CI)

Noble PW et al. Eur Resp J 2016

Nintedanib works across major patient subgroups...

Subgroup	N Placebo	analyzed Nintedanib 150 mg bid		Nintedanib vs placebo difference in adjusted rate of decline in FVC, mL/year (95% CI)	P-value for treatment by time by subgroup Interaction
Male	334	507		115.7 (75.5, 156.0)	0.1911
Female	89	131	•	90.7 (32.1, 149.2)	
Age <65 years	145	258	·	115.2 (55.1, 175.2)	0.3832
Age ≥65 years	278	380	└ · · · · · · · · · · · · · · · · · · ·	105.9 (64.6, 147.3)	
wite	240	300	· · · · · · · · · · · · · · · · · · ·	120.4 (10.2, 100.0)	0.7104
Anien	100	101	•	24.4 (22.7, 454.6)	
FVC ≤70% predicted	154	207	• • • • • • • • • • • • • • • • • • •	113.5 (51.3, 175.7)	0.9505
FVC >70% predicted	269	431	└ →	109.0 (68.2, 149.9)	
SGRQ total score ≤40	232	323	· · · · • • · · · · · · · · · · · · · ·	100.6 (57.1, 144.0)	0.0961
SGRQ total score >40	187	301	• • • • • • • • • • • • • • • • • • •	125.0 (69.5, 180.6)	
Never smoked	122	174	• • • • • • • • • • • • • • • • • • •	89.8 (32.8, 146.8)	0.4728
Ex-/current smoker	301	464	· · · · · · · · · · · · · · · · · · ·	118.2 (76.2, 160.2)	
Corticosteroids for systemic use	89	136	•	98.5 (24.7, 172.3)	0.9379
No corticosteroids for systemic use	334	502	` `	113.1 (74.5, 151.6)	
Bronchodilator use	72	129	•	95.9 (3.5, 188.3)	0.4864
No bronchodilator use	351	509	· · · · · · · · · · · · · · · · · · ·	112.7 (76.3, 149.2)	
Emphysema at baseline	166	254	• • • • • • • • • • • • • • • • • • •	102.0 (43.2, 160.9)	0.5199
No emphysema at baseline	257	384	↓ · · · · · · · · · · · · · · · · · · ·	115.4 (73.8, 157.1)	
Honeycombing on HRCT and/or confirmation of UIP pattern by biopsy	298	425	· · · · · · · · · · · · · · · · · · ·	117.0 (76.3, 157.8)	0.8139
Features of possible UIP pattern on HRCT and no biopsy	125	213	• • • • • • • • • • • • • • • • • • •	98.9 (36.4, 161.5)	
FVC ≤90% predicted	315	472	• • • • • • • • • • • • • • • • • • •	102.1 (61.9, 142.3)	0.5300
FVC >90% predicted	108	166	•	133.1 (68.0, 198.2)	
All	423	638	· · · · · · · · · · · · · · · · · · ·	109.9 (75.9, 144.0)	J
			Ť		
-10	00	-50		00 250	300
	Favor	s placebo	Favors nintedanib 150 mg bio	1	

IPF - the future

Somogyi V, et al. Eur Respir Rev 2019

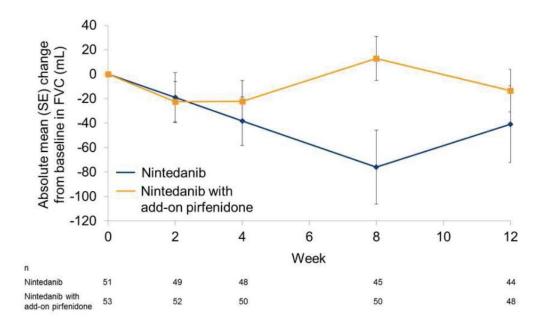
Combination therapy: the future of management for idiopathic pulmonary fibrosis?

Wim A Wuyts, Katerina M Antoniou, Keren Borensztajn, Ulrich Costabel, Vincent Cottin, Bruno Crestani, Jan C Grutters, Toby M Maher, Venerino Poletti, Luca Richeldi, Carlo Vancheri, Athol U Wells

	Pathways targeted	Example of efficacious combination therapy
Lung cancer ^{41,42}	Crosslinking of DNA (platinum); microtubule toxin (vinorelbine); nucleoside analogue; gemcitabine; EGFR (erlotinib, gefitinib)	Platinum-based drug (cisplatin or carboplatin) with vinorelbine or gemcitabine; so-called traditional cytotoxic drugs and inhibitors of EGFR
COPD ^{43,44}	Longacting β agonists, longacting muscarinic antagonists, inhaled corticosteroids, phosphodiesterase 4 inhibitor	Longacting β agonists with longacting muscarinic antagonists; longacting β agonists with inhaled corticosteroids; glycopyrronium with indacaterol; umeclidinium with vilanterol; longacting β agonists with inhaled corticosteroids and vilanterol
Asthma ^{45,46}	Longacting β agonists, longacting muscarinic antagonists, inhaled corticosteroids	Longacting β agonists with inhaled corticosteroids, longacting muscarinic antagonists with inhaled corticosteroids
Pulmonary arterial hypertension ⁴⁷⁻⁴⁹	Guanylate cyclase– phosphodiesterase-5 pathway; endothelin receptor pathway; prostanoid pathway	Riociguat in addition to background therapy with an endothelin receptor antagonist or a prostanoid; macitentan in addition to background sildenafil; ambrisentan with tadalafil
Table 2: Combinatio	on regimens used in other chronic lu	ung diseases

Lancet Resp Med 2014; 11: 933-42

Nintedanib with Add-on Pirfenidone in Idiopathic Pulmonary Fibrosis Results of the INJOURNEY Trial

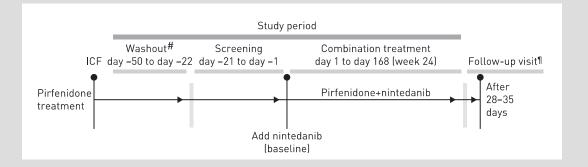

Carlo Vancheri¹, Michael Kreuter², Luca Richeldi³, Christopher J. Ryerson⁴, Dominique Valeyre⁵, Jan C. Grutters^{6,7}, Sabrina Wiebe⁸, Wibke Stansen⁹, Manuel Quaresma^{2,9}, Susanne Stowasser⁹, and Wim A. Wuyts¹⁰; on behalf of the INJOURNEY Trial Investigators

Randomized open-label period Run-in Nintedanib 150 mg bid with add-on pirfenidone up to 801 mg tid Nintedanib 150 mg bid R Screening Follow-up Nintedanib 150 mg bid Visit 2 3 Phone 7 Follow-up 1 5 6 4-5 weeks 12 16 Week 0 1 2 4 8 Pirfenidone titration

R, randomization.

Table 4. Adverse Events

	Nintedanib 150 mg Twice Daily with Add-on Pirfenidone (<i>n</i> = 53)	Nintedanib 150 mg Twice Daily (<i>n</i> = 51)
Any adverse events Most frequent adverse events*	47 (88.7)	45 (88.2)
Diarrhea	20 (37.7)	16 (31.4)
Nausea	22 (41.5)	6 (11.8)
Vomiting	15 (28.3)	6 (11.8)
Fatigue	10 (18.9)	6 (11.8)
Upper abdominal pain	7 (13.2)	4 (7.8)
Decreased appetite	6 (11.3)	5 (9.8)
Dyspnea	2 (3.8)	8 (15.7)
Headache	7 (13.2)	1 (2.0)
Any serious adverse events [†]	2 (3.8)	5 (9.8)
Any fatal adverse events	0	0



Vanchieri C, et al Am J Respir Crit Care Med 2018

Safety of nintedanib added to pirfenidone treatment for idiopathic pulmonary fibrosis

Kevin R. Flaherty¹, Charlene D. Fell², J. Terrill Huggins³, Hilario Nunes⁴, Robert Sussman⁵, Claudia Valenzuela⁶, Ute Petzinger⁷, John L. Stauffer⁸, Frank Gilberg⁹, Monica Bengus⁹ and Marlies Wijsenbeek¹⁰ TABLE 2 Summary of common treatment-emergent adverse events (TEAEs) and TEAEs leading to discontinuation (safety population[#])

	Patients with at least one TEAE ¹¹	Patients with at least one TEAE related to pirfenidone only*	Patients with at least one TEAE related to nintedanib only ⁺	Patients with at least one TEAE related to both pirfenidone and nintedanib
TEAEs occurring in ≥5% of pati	ents			
≥1 TEAE	88 (99)			
≥1 treatment-related TEAE	74 (83)	15 (17)	67 (75)	26 [29]
Diarrhoea	44 (49)	2 [2]	38 (43)	5 (6)
Nausea	41 (46)	3 (3)	31 (35)	12 [14]
Vomiting	21 (24)	1 (1)	16 (18)	7 (8)
Decreased appetite	14 (16)	2 [2]	7 (8)	5 (6)
Fatigue	11 (12)	0	8 (9)	3 (3)
Dyspepsia	8 (9)	1 (1)	6 (7)	1 (1)
Headache	8 (9)	0	7 (8)	1 (1)
Weight decreased	6 (7)	1 (1)	3 (3)	2 (2)
Photosensitivity or rash TEAEs	7 (8)	4 (5)	2 (2)	1 (1)
Abdominal pain upper	5 (6)	1 (1)	2 (2)	2 (2)
Dizziness	5 (6)	0	4 (5)	1 (1)
FEAEs leading to discontinuatio	n			
≥1 TEAE	13 (15)			
≥1 treatment-related TEAE	11 (12)	0	10 (11)	1 (1)
Nausea	4 (5)	0	3 (3)	1 (1)
Diarrhoea	4 (5)	0	3 (3)	1 (1)
Fatigue	2 (2)	0	2 (2)	0
Weight decreased	2 (2)	0	2 (2)	0
Deep vein thrombosis	1 (1)	0	1 (1)	0
Epigastric discomfort	1 (1)	0	1 (1)	0
Malaise	1 (1)	0	1 (1)	0
Migraine	1 (1)	0	1 (1)	0
Vomiting	1 (1)	0	1 (1)	0

Combined pirfenidone and nintedanib use for 24 weeks was tolerated by the majority of patients with IPF and associated with a similar pattern of TEAEs expected for either treatment alone. These results encourage further study of combination treatment with pirfenidone and nintedanib in patients with IPF.

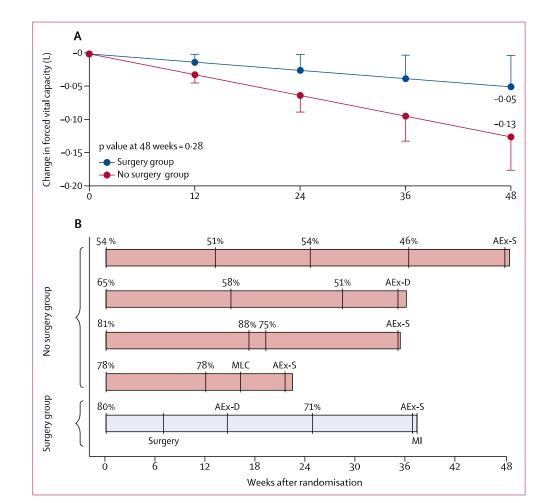
Trials of Pirfenidone and nintedanib in combination

Trials of pirfenidone and nintedanib in combination

- Nintedanib added to pirfenidone⁴ and pirfenidone added to nintedanib (INJOURNEY)⁵
 - Safety and tolerability profile similar to Phase III trials, with a slightly higher discontinuation rate
 - Short duration, no placebo controls
 - No robust efficacy data

Parker J, et al. ATS 2017;195:A7606; 2. Raghu G, et al. *Lancet Respir Med.* 2017;5:22–32;
Clinicaltrials.gov identifier: NCT02550873; 4. Flaherty KR, et al. *Eur Respir J.* 2018;52:1800230;
Vancheri C, et al. *Am J Respir Crit Care Med.* 2018;197:356–363

Proton Pump Inhibitors in IPF: A Call for Clinical Trials


Yohannes T. Ghebre^{1,2*}

¹ Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, United States, ² Section of Pulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States

The recent FDA approval of two drugs, pirfenidone and nintedanib, for the treatment of idiopathic pulmonary fibrosis (IPF) has fueled interest in the development of additional drugs to treat the disease or its major clinical complications including cough and acute exacerbations. Since 2015, there are at least a dozen active interventional studies that are testing the efficacy of novel pharmacotherapies, exercise or stem cells in modifying the disease process in IPF. Additionally, there are combinatorial studies evaluating the effectiveness of pirfenidone or nintedanib in combination with other agents. However, there remains an urgent need for clinical trials to prospectively evaluate the efficacy of existing drugs with promising retrospective data, such as proton pump inhibitors (PPIs), in IPF. Several retrospective cohorts have provided tantalizing data supporting the beneficial effect of PPIs in patients with well-defined IPF. This review provides the general outlook of pharmacotherapies in IPF, and highlights preclinical and retrospective clinical data to make a case for randomized controlled clinical trials of PPIs in IPF.

Frontiers in Pharmacology | www.frontiersin.org May 2018 | Volume 9 | Article 499

Lancet Respir Med 2018

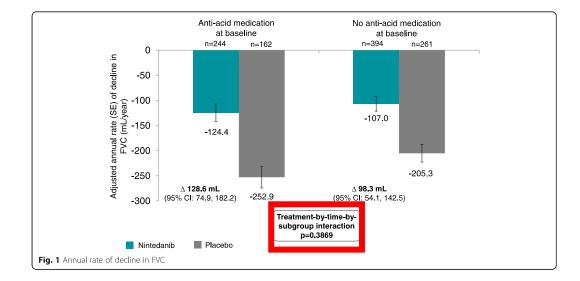
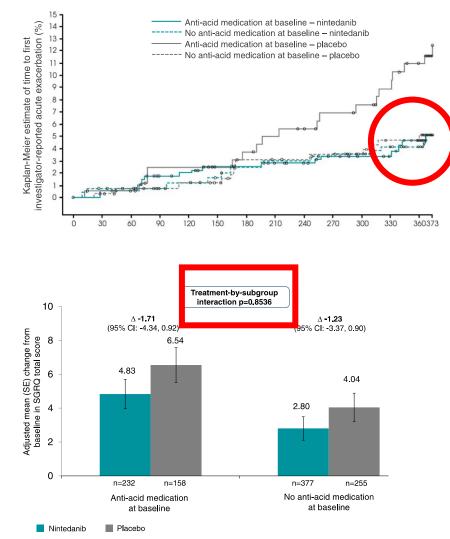
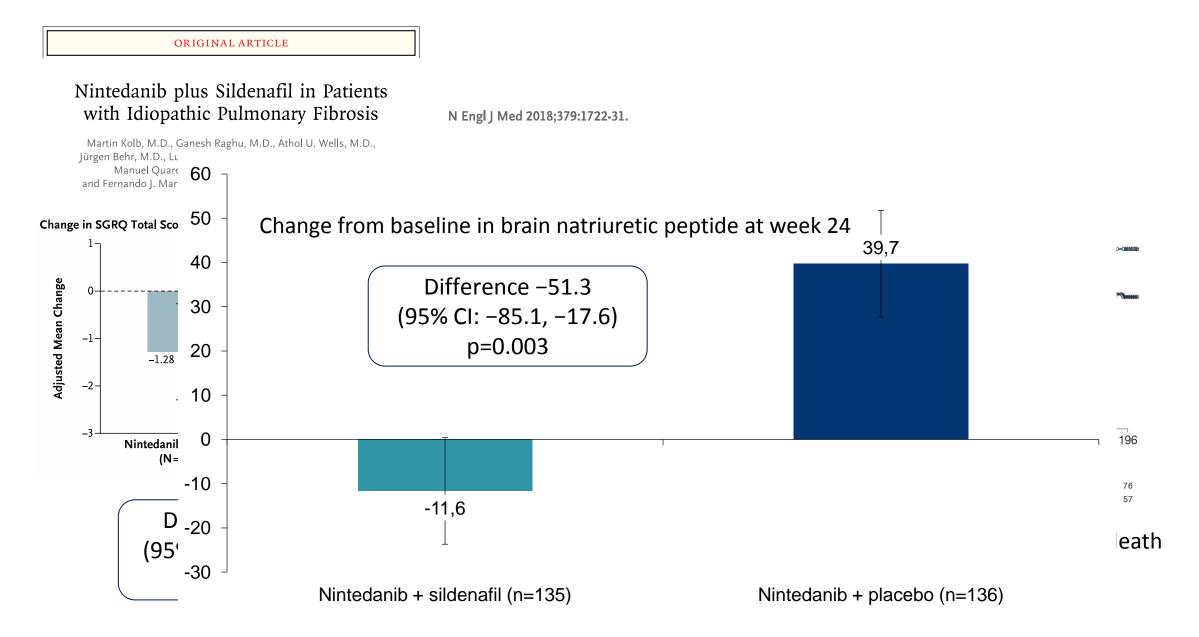


Figure 2: Change in forced vital capacity and deaths by treatment group

(A) The mean change in forced vital capacity from randomisation to week 48. Error bars are standard error.
(B) The disease course of the five patients who died during the study. Percentages are measured forced vital capacity in percentage of predicted and acute exacerbations. Each bar ends at the time of the patient's death.
MLC=metastatic lung cancer. MI=myocardial infarction. AEx-D=definite acute exacerbations. AEx-S=suspected acute exacerbations.


Anti-acid therapy in idiopathic pulmonary fibrosis: insights from the INPULSIS[®] trials

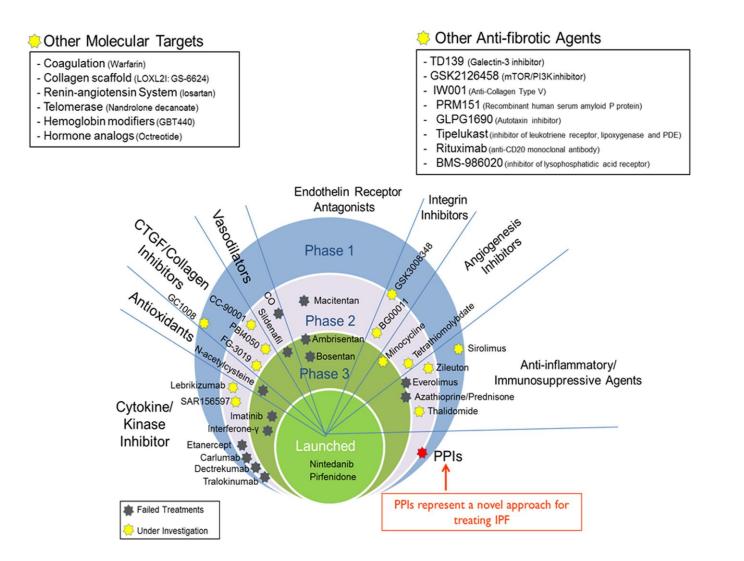
Ulrich Costabel¹, Jürgen Behr², Bruno Crestani³, Wibke Stansen⁴, Rozsa Schlenker-Herceg⁵, Susanne Stowasser⁴ and Ganesh Raghu^{6*}



Costabel et al. Respiratory Research (2018) 19:167

Time to first acute exacerbation

Change from baseline in SGRQ total score



patients with IPF and a DLco of 35% or less

Jürgen Behr,¹ Steven D. Nathan,² Sergio Harari,³ Wim Wuyts,⁴ Nesrin Mogulkoç Bishop,⁵ Demosthenes Borous,⁶ Katerina Antoniou,⁷ Julien Guiot,⁸ Mordechai Kramer,⁹ Klaus-Uwe Kirchgaessler,¹⁰ Monica Bengus,¹⁰ Frank Gilberg,¹⁰ Athol U. Wells¹¹

- Baseline Characteristics of All Patients Randomized in a Phase IIb Trial of <u>Sildenafil Added to Pirfenidone in</u> Patients With Advanced Idiopathic Pulmonary Fibrosis and Risk of Pulmonary Hypertension
- Screening/run-in failure occurred in 96/271 patients (35.4%), mainly based on eligibility criteria related to advanced IPF and risk of PH.
- All randomized patients (N=177) were included; mean age was 68.6 years, 75.7% were male and mean time from IPF diagnosis was 3.1 y
- Additional values reported in MA29957 included: mean mPAP on RHC was 28.1 mmHg (n=32), echocardiogram (ECHO) peak TRV was 3.5 m/s (n=158) and sPAP was 57.5 mmHg (n=157). Mean 6MWD was 290.7 m.

ATS 2019

	TABLE 2 Current	phase II-III	trials in	idiopathic	pulmonary	v fibrosis	(IPF)
--	-----------------	--------------	-----------	------------	-----------	------------	-------

	Mechanism of action	Clinical trial identifier	Study description	Primary outcome measures	Phase of development	Treatment duration
PRM-151	Recombinant form of human SAP	NCT02550873	Randomised, double-blind, placebo controlled	Change from baseline in FVC % pred	Ш	28 weeks
Simtuzumab	Anti-LOX antibody	NCT01769196	Randomised, double-blind, placebo-controlled	The effect of simtuzumab (GS-6624) on progression-free survival	Ш	148 weeks
Tipelukast	Leukotriene antagonists	NCT02503657	Randomised, double-blind, placebo controlled	Change from baseline FVC at 26 weeks	Ш	26 weeks
Tralokinumab	Anti IL-13 antibody	NCT01629667	Randomised dose-ranging	Change from baseline FVC % pred at week 52	П	52 weeks
SAR156597	Anti IL-4 and IL-13 antibody	NCT01529853	Randomised, double-blind, placebo-controlled	Safety/tolerability: number of participants with adverse events	Ш	6 weeks
Lebrikizumab	Anti IL-13 antibody	NCT01872689	Randomised, double-blind, placebo-controlled	Annualised rate of decrease in FVC % pred over 52 weeks	Ш	52 weeks
BG00011	Anti-integrin antibody	NCT03573505	Randomised, double-blind, placebo-controlled	Yearly rate of change in FVC	П	52 weeks
Pamrevlumab (FG-3019)	Anti-CTGF antibody	NCT01890265	Randomised, double-blind, placebo-controlled	Change from baseline in FVC % pred at week 48	Ш	48 weeks
PBI-4050	GPR84 antagonist/ GPR40 agonist	NCT02538536	Open-label, single arm, exploratory, observational study	Number of subjects with abnormal laboratory values and/or adverse events that are related to treatment	11	20 weeks
KD025	Selective inhibitor of ROCK2	NCT02688647	Randomised, phase 2, open-label	Change in FVC in baseline to 24 weeks	Ш	24 weeks
CC-90001	Kinase inhibitor targeting JNKs	NCT03142191	Randomised, double-blind, placebo-controlled	Percentage point change in FVC % pred	Ш	24 weeks
GLPG1690	Autotaxin-LPA inhibitor	NCT02738801	Randomised, double-blind, parallel group, placebo-controlled	Safety, tolerability, pharmacokinetic and pharmacodynamic properties of GLPG1690	11	12 weeks
Omipalisib/ GSK2126458	Inhibitor of PI3K/Akt pathway	NCT01725139	Randomised, double-blind, placebo-controlled	To explore a number of doses of GSK2126458 for engagement of pharmacology after short-term dosing	Ι	7–10 days
Sirolimus	mTOR inhibitor	NCT01462006	Double-blind placebo-controlled pilot study	Change in peripheral blood concentration of CXCR4 ⁺ fibrocytes; number of subjects with drug side-effects	NA	22 weeks
Rituximab	Antibody targeting CD20	NCT01969409	Randomised, double-blind, placebo-controlled	Titres of anti-HEp-2 autoantibodies, by indirect immunofluorescence assays over 9 months	II	36 weeks
Co-trimoxazole or doxycycline	Antimicrobial drugs	NCT02759120	Randomised, un-blinded, phase III	Time to first non-elective, respiratory hospitalisation or all-cause mortality	III	9 months

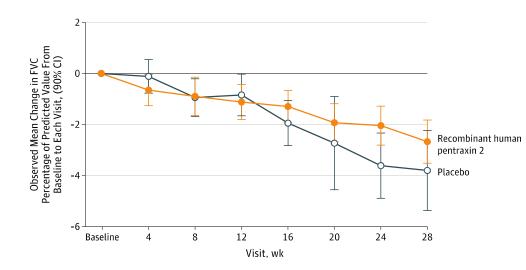
SAP: serum amyloid P; FVC: forced vital capacity; LOX: lysyl oxidase; IL: interleukin; CTGF: connective tissue growth factor; GPR: G protein-coupled receptor; ROCK: ρ-associated coiled-coil containing protein kinase; JNK: Jun N-terminal kinase; LPA: lysophosphatidic acid; PI3K/Akt: phosphoinositide 3-kinase/protein kinase B. mTOR: mammalian target of rapamycin; CXCR: C-X-C chemokine receptor; HEp: human epithelial cell.

Promising Phase II studies

- Autotaxin inhibitor (GLPG1690)
- Recombinant human pentraxin 2 (PRM-151)
- Pamrevlumab (anti-CTGF)
- Anti-integrin-αvβ6 (BG00011; STX-100)
- PBI4050

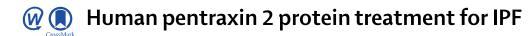
JAMA | Preliminary Communication

Effect of Recombinant Human Pentraxin 2 vs Placebo on Change in Forced Vital Capacity in Patients With Idiopathic Pulmonary Fibrosis A Randomized Clinical Trial


JAMA. doi:10.1001/jama.2018.6129

Ganesh Raghu, MD; Bernt van den Blink, MD, PhD; Mark J. Hamblin, MD; A. Whitney Brown, MD; Jeffrey A. Golden, MD; Lawrence A. Ho, MD; Marlies S. Wijsenbeek, MD; Martina Vasakova, MD, PhD; Alberto Pesci, MD; Danielle E. Antin-Ozerkis, MD; Keith C. Meyer, MD; Michael Kreuter, MD; Hugues Santin-Janin, PhD; Geert-Jan Mulder, MD; Brian Bartholmai, MD; Renu Gupta, MD; Luca Richeldi, MD

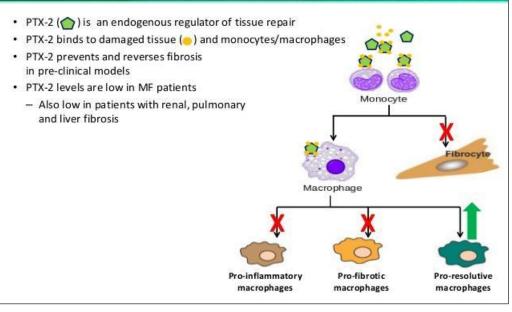
Recombinant human pentraxin 2 in IPF: change in FVC (primary outcome)


Least-squares mean change in FVC percentage of predicted value from baseline to Week 28

Patients not receiving concurrent Patients receiving concurrent All patients pirfenidone or nintedanib pirfenidone or nintedanib 2 2 2 -Least-Squares Mean Change in FVC Percentage of Predicted Value From Baseline to Week 28 (90% CI) -2 -2 -2 -4 -6 -6 $p=0.00^{\circ}$ p=0.13 p=0.002 -8 Placebo Placebo Recombinant Recombinant Placebo Recombinant (n = 39)Human (n=9) Human (n = 30)Human Pentraxin 2 Pentraxin 2 Pentraxin 2 (n = 16)(n=61) (n=77)

CONCLUSIONS AND RELEVANCE In this preliminary study, recombinant human pentraxin 2 vs placebo resulted in a slower decline in lung function over 28 weeks for patients with idiopathic pulmonary fibrosis. Further research should more fully assess efficacy and safety.

Comment

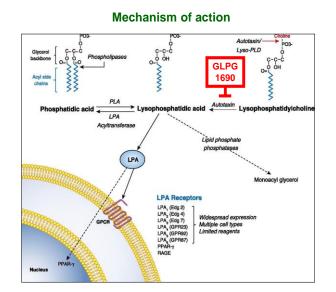


Argyris Tzouvelekis, Vassilios Tzilas, Katerina M Antoniou, *Demosthenes Bouros

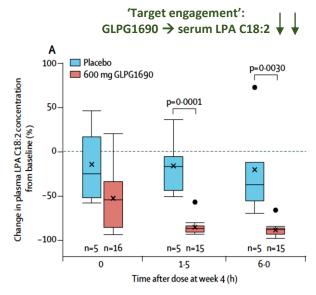
Lancet Respir Med. 2019

Recombinant human pentraxin 2 in IPF: effect on FVC

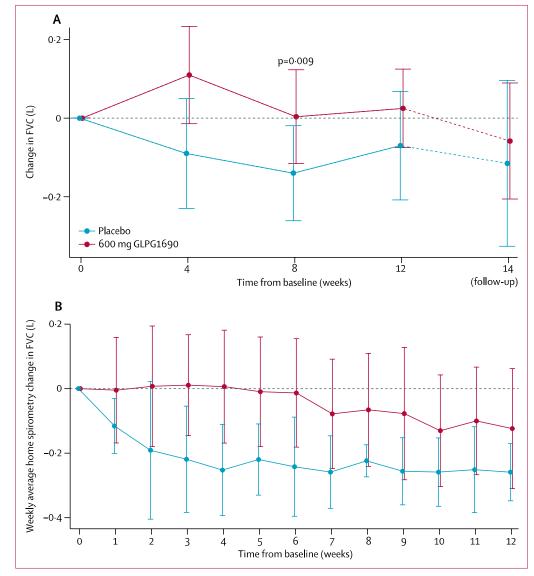
PRM-151: Recombinant Human Pentraxin-2 (PTX-2)



Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomised placebo-controlled trial


Lancet Respir Med 2018

Toby M Maher, Ellen M van der Aar, Olivier Van de Steen, Lisa Allamassey, Julie Desrivot, Sonia Dupont, Liesbeth Fagard, Paul Ford, Ann Fieuw, Wim Wuyts


GLPG1690, a novel autotaxin inhibitor, to treat IPF: a Phase IIa study

GPCR, G-protein-coupled receptor; LPA, lysophosphatidic acid; PLA, phospholipase A; PPAR, peroxisome proliferator activated receptor; RAGE, receptor for advanced glycation end products

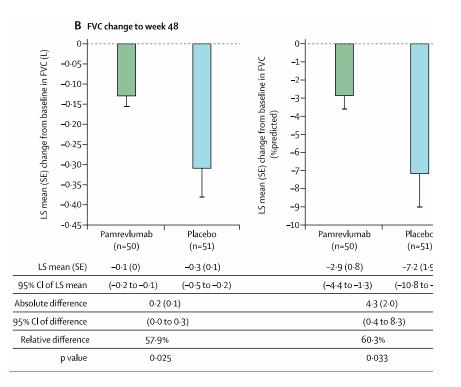

Knowlden S, et al. *J Immunol.* 2014;192:851–857; Maher TM, et al. *Lancet Respir Med.* 2018;8:627–635

Figure 3: Mean (95% CI) changes in FVC from baseline in the placebo and GLPG1690 groups in the intention-to-treat population

Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial

Luca Richeldi, Evans R Fernández Pérez, Ulrich Costabel, Carlo Albera, David J Lederer, Kevin R Flaherty, Neil Ettinger, Rafael Perez, Mary Beth Scholand, Jonathan Goldin, Kin-Hung Peony Yu, Thomas Neff*, Seth Porter, Ming Zhong, Eduard Gorina, Elias Kouchakji, Ganesh Raghu

Lancet Respir Med 2019

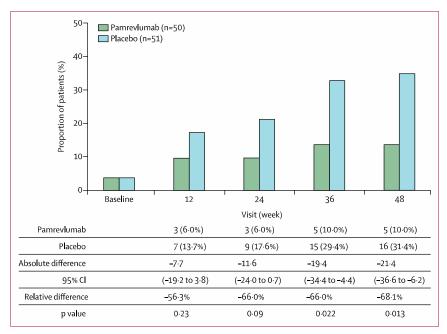
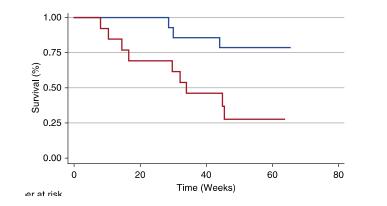
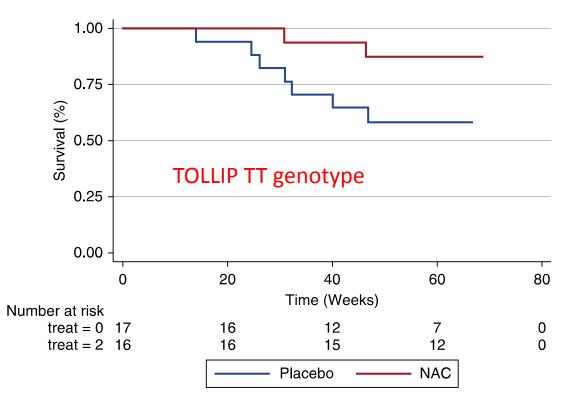


Figure 3: Proportion of patients with decline in percentage of predicted FVC of 10% or greater, or death, by visit

In conclusion, data from this study suggest that pamrevlumab has the potential to be an important therapeutic option for patients with idiopathic pulmonary fibrosis. The efficacy and safety of pamrevlumab 30 mg/kg administered by intravenous infusion every 3 weeks will be tested further in the ongoing phase 3, randomised, placebo-controlled trial (ZEPHYRUS; NCT03955146) in patients with idiopathic pulmonary fibrosis.

TOLLIP, *MUC5B*, and the Response to *N*-Acetylcysteine among Individuals with Idiopathic Pulmonary Fibrosis

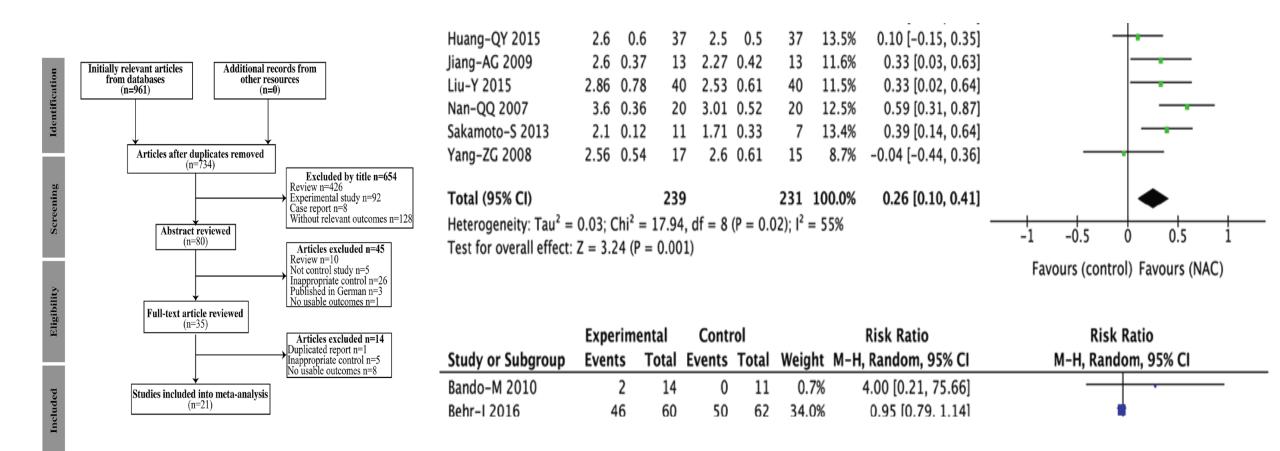

Justin M. Oldham¹*, Shwu-Fan Ma¹*, Fernando J. Martinez², Kevin J. Anstrom³, Ganesh Raghu⁴, David A. Schwartz⁵, Eleanor Valenzi¹, Leah Witt¹, Cathryn Lee¹, Rekha Vij¹, Yong Huang¹, Mary E. Strek¹, and Imre Noth¹; for the IPFnet Investigators


¹Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois; ²Department of Internal Medicine, Weill Cornell Medical School, New York City, New York; ³Duke Clinical Research Institute, Duke University, Durham, North Carolina; ⁴Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Washington Medical Center, Seattle, Washington; and ⁵Department of Medicine, The University of Colorado, Denver, Colorado

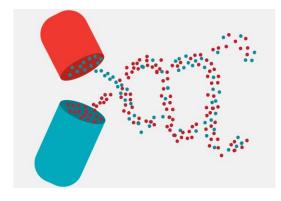
Am J Respir Crit Care Med Vol 192, Iss 12, pp 1475–1482, Dec 15, 2015

Objectives: To determine whether single-nucleotide polymorphisms (SNPs) within *TOLLIP* and *MUC5B* modify the effect of interventions in subjects participating in the Evaluating the Effectiveness of Prednisone, Azathioprine, and *N*-Acetylcysteine in Patients with Idiopathic Pulmonary Fibrosis (PANTHER-IPF) clinical trial.

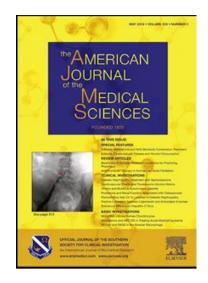
Conclusions: NAC may be an efficacious therapy for individual with IPF with an rs3750920 (*TOLLIP*) TT genotype, but it was associated with a trend toward harm in those with a CC genotype.

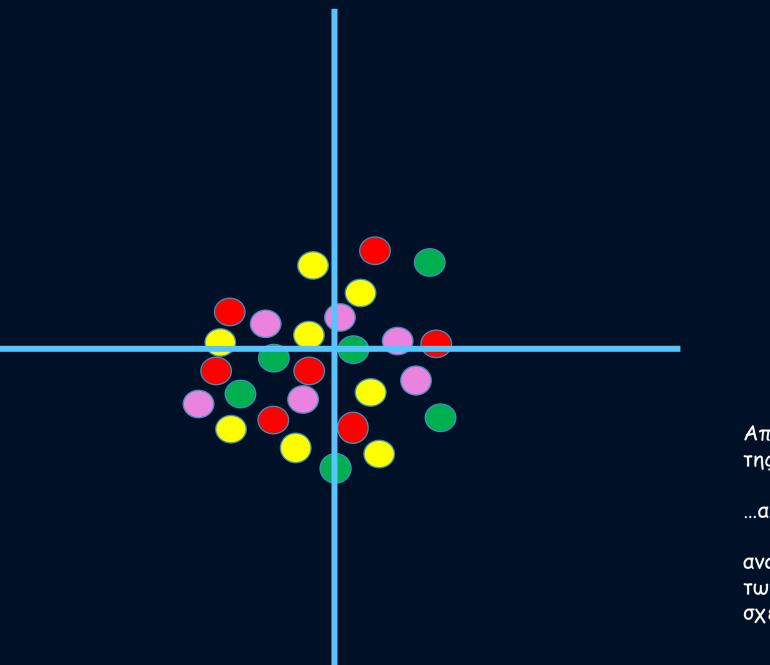


In those with a TT genotype, NAC therapy is associated with improved survival compared with placebo ($P_{logrank} = 0.06$; HR 0.14; 95% CI 0.02–0.83; P = 0.03)


Efficacy and safety of *N*-acetylcysteine therapy for idiopathic pulmonary fibrosis: An updated systematic review and meta-analysis

FANCHAO FENG^{1*}, JIARUI ZHANG^{2*}, ZHICHAO WANG¹, QI WU¹ and XIANMEI ZHOU^{1,3}


- Unmet need for *biomarkers*
- Current therapy for IPF: nintedanib and pirfenidone
- Emergence of combination therapy
- Novel disease modifying agents
- Development of personalized therapy


Current and Future Idiopathic Pulmonary Fibrosis Therapy

Fabiana Baldi MD, Giuliana Pasciuto MD, Francesco Macagno MD, Loredana Panico MD, Luca Richeldi MD

The American Journal of the Medical Sciences (2019)

There is consistent hope for a near future in which IPF therapies will target different pathologic pathways, thus making possible to provide a personalised and effective therapeutic strategy to treat, hopefully cure, IPF.

Personalized Medicine

Αποτελεσματικότητα και ασφάλεια της φαρμακευτικής θεραπείας...

...αλλά και

αναγνώριση των προτιμήσεων και των αναγκών κάθε ασθενούς σχετικά με τη συνολική του φροντίδα

